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Chapter 1

Introduction

The goal of this project is to formalize Schlessinger’s criterion in Lean following the original
article [?]. Some parts are also based on the proof given in [?, Tag 06G7].
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Chapter 2

Definitions

2.1 Base category
Let Λ be a complete Noetherian (commutative) local ring and 𝑘 its residue field.

Definition 1. We define CΛ to be the category of Artinian local Λ-algebras having residue field
𝑘, where morphisms are local algebra homomorphisms.

The condition of having the same residue field for a Λ-algebra 𝐴 can be stated in a more
general context as follows: the algebra map Λ → 𝑘𝐴 is surjective (where 𝑘𝐴 is the residue field
of 𝐴). As such the conditions on Λ are omitted in Lean.

Furthermore, we do not need to assume the morphisms to be local, as we have the following
result:

Lemma 2. Let 𝐴 and 𝐵 be commutative local rings, and 𝑓 ∶ 𝐴 → 𝐵 a ring morphism. If 𝐴 is
Artinian, then 𝑓 is local.

Proof. In an Artinian local ring, the maximal ideal is the set of nilpotent elements. In particular
if 𝑥 ∈ 𝔪𝐴, then 𝑓(𝑥) is not a unit.

The Artinian condition on elements of CΛ could potentially be interpreted in two ways: either
as Artinian rings or as Artinian Λ-modules. In this context, both are equivalent.

Lemma 3. Let 𝐴 be a local Λ-algebra with same residue field as Λ. Then lengthΛ(𝐴) =
length𝐴(𝐴).
Proof. We prove a more general result: if 𝑀 is an 𝐴-module, then lengthΛ(𝑀) = length𝐴(𝑀).
This result follows easily by induction on lengthΛ(𝑀) from the case lengthΛ(𝑀) = 1, in which
case we have 𝑀 ≅ 𝑘.

[?, Tag 06GG]

Lemma 4. The category CΛ has pullbacks.

Proof. Let 𝑓 ∶ 𝑋 → 𝑍 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms in CΛ. Consider the set 𝑃 = {(𝑥, 𝑦) ∈
𝑋×𝑌 | 𝑓(𝑥) = 𝑔(𝑦)}. Since 𝑓 and 𝑔 are local, the subset 𝔪𝑋 ×𝔪𝑌 is an ideal (which is maximal).
We have 𝑘Λ → 𝑘𝑃 → 𝑘𝑋, so 𝑘𝑃 ≅ 𝑘. Furthermore, since 𝑋 and 𝑌 are Artinian Λ-modules by
theorem 3, 𝑃 is an Artinian Λ-module as well, so it is an Artinian ring.

We also note that 𝑘 is a terminal object in CΛ, so the category also admits products (which
are the same as pullbacks over the terminal object).
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2.2 Small Extensions
Let 𝑝 ∶ 𝐵 → 𝐴 be a surjective morphism in CΛ.

Definition 5. 𝑝 is a small extension if ker 𝑝 is a non-zero principal ideal such that 𝔪𝐵 ⋅ker 𝑝 = 0.

Lemma 6. The following propositions are equivalent:

1. 𝑝 is a small extension

2. ker 𝑝 is a minimal non-zero ideal

3. lengthΛ(𝐵) = lengthΛ(𝐴) + 1
Proof. Since 𝑝 is surjective, we have lengthΛ(𝐵) = lengthΛ(𝐴)+ lengthΛ(ker 𝑝), and we also have
that length𝐵(ker 𝑝) = 1 if and only if ker 𝑝 is a minimal non-zero ideal, so using theorem 3 we
get (2) ⟺ (3). We now show (1) ⟺ (2).

Assume that 𝑝 is a small extension, write ker 𝑝 = (𝑡), let 𝐼 < ker 𝑝 be an ideal and 𝑥 ∈ 𝐼 .
There exists 𝑦 ∈ 𝐵 such that 𝑥 = 𝑡𝑦. Since 𝐼 ≠ (𝑡), 𝑦 is not a unit, so we have 𝑦 ∈ 𝔪𝐵, and
𝑥 = 0 by definition of a small extension. So 𝐼 = 0 and ker 𝑝 is minimal.

Assume that ker 𝑝 is a minimal non-zero ideal. Let 𝑡 ∈ ker 𝑝 ∖ {0}. By minimality, we have
ker 𝑝 = (𝑡). Furthermore, since 𝔪𝐵 is nilpotent and ker 𝑝 ≠ 0 we have 𝔪𝐵 ⋅ ker 𝑝 ≠ ker 𝑝 so
𝔪𝐵 ⋅ ker 𝑝 = 0 by minimality. So 𝑝 is a small extension.

Lemma 7. If a property 𝐶 on morphisms of CΛ is satisfied by isomorphisms and stable by
composition on the left by a small extension, then it holds for any surjection.

Proof. By induction on lengthΛ(𝐵) ∈ ℕ. If ker 𝑝 = 0, then 𝑝 is an isomorphism. Otherwise, there
exists a minimal non-zero ideal 𝐼 of 𝐵 because 𝐵 is Artinian. By minimality, since ker 𝑝 ≠ 0, we
have 𝐼 ≤ ker 𝑝, so 𝑝 factorizes through the small extension 𝐵 → 𝐵/𝐼 . We conclude by applying
the induction hypothesis to the map 𝐵/𝐼 → 𝐴.

Lemma 8. If a property 𝐶 on objects of CΛ is satisfied by 𝑘, stable by isomorphisms and stable
by small extensions, then it holds for all objects of CΛ.

Proof. One way is to apply the previous lemma to the map 𝑝 ∶ 𝐵 → 𝑘 (i.e. with the property on
morphisms 𝑞 ∶ 𝑋 → 𝑌 given by if 𝑌 = 𝑘 then 𝐶(𝑋)). In the code the proof is essentially copied
and adapted from the previous lemma.

2.3 Completed base category
For pro-representability, we consider a bigger category with objects that are projective limits of
objects in the base category. However, in this context the term pro-representability is used in a
more restrictive sense than usual, so that the ”completed” category is not the pro-category as
one might expect.

Definition 9. A local ring with maximal ideal 𝔪 is complete if it is 𝔪-adically complete.

Definition 10. We define ĈΛ to be the category of complete Noetherian local Λ-algebras having
residue field 𝑘, where morphisms are local algebra homomorphisms.

Note that a local ring is endowed with a natural topological ring structure, namely the 𝔪-adic
topology, where 𝔪 is the maximal ideal. It is defined by setting the powers of 𝔪 as a neighborhood
base of 0.
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Lemma 11. The category ĈΛ is a full subcategory of CΛ.

Proof. An Artinian ring is Noetherian, and its 𝔪-adic topology is discrete, so it is trivially
complete.

Lemma 12. A local Noetherian ring whose maximal ideal is nilpotent is Artinian.

Proof. A Noetherian ring is Artinian if and only if it has Krull dimension 0, so it suffices to show
that any prime ideal is maximal. Let 𝐼 be a prime ideal. Since 𝔪𝑛 = 0 ≤ 𝐼 we have 𝔪 ≤ 𝐼 , so
𝐼 = 𝔪 is maximal.

Lemma 13. If 𝐴 ∈ ĈΛ, then for any 𝑛 ∈ ℕ∗ we have 𝐴/𝔪𝑛 ∈ CΛ where 𝔪 is the maximal ideal
of 𝐴. In fact, we have 𝐴/𝐽 ∈ CΛ for any ideal 𝐽 such that 𝔪𝑛 ≤ 𝐽 < 𝐴.

Proof. 𝐴/𝔪𝑛 is a local Noetherian ring, with nilpotent maximal ideal 𝔪/𝔪𝑛 and residue field 𝑘,
so theorem 12 applies.

Remark. The fact that 𝐴 ∈ ĈΛ is complete (and Noetherian) means that we have 𝐴 = lim←− 𝐴/𝔪𝑛.
We don’t really use this result here but it explains some of the underlying ideas.

Lemma 14. Let 𝑅 ∈ ĈΛ, 𝐴 ∈ CΛ and 𝑢 ∶ 𝑅 → 𝐴. There exists 𝑛 ∈ ℕ∗ such that 𝔪𝑛
𝑅 ≤ ker 𝑢,

so 𝑢 factorizes through 𝑢𝑛 ∶ 𝑅/𝔪𝑛
𝑅 → 𝐴.

Proof. There exists 𝑛 such that 𝔪𝑛
𝐴 = 0, so 𝔪𝑛

𝑅 ≤ 𝑢−1(𝔪𝑛
𝐴) = ker 𝑢.

2.4 Trivial Square-Zero Extensions
Definition 15. For 𝑉 a 𝑘-vector space, we write 𝑘[𝑉 ] for the trivial square-zero extension of 𝑉
over 𝑘, that is the module 𝑘 ⊕ 𝑉 with multiplication defined so that 𝑉 2 = 0.

Definition 16. We write 𝑘[𝜀] for dual numbers, the special case where 𝑉 = 𝑘.

Definition 17. We can a functor Mod𝑓𝑔
𝑘 → CΛ that commutes with finite products (where

Mod𝑓𝑔
𝑘 is the category of finite dimensional 𝑘-vector spaces).

Lemma 18. If 𝐹 is a functor CΛ → 𝑆𝑒𝑡𝑠 such that

𝐹(𝑘[𝑉 ] × 𝑘[𝑊]) →̃ 𝐹(𝑘[𝑉 ]) × 𝐹(𝑘[𝑊])

for all finite dimensional 𝑘-vector spaces 𝑉 and 𝑊 , then 𝐹(𝑘[𝑉 ]) has a canonical 𝑘-vector space
structure.

Proof. This is a special case of the following lemma [?, Tag 06I6]:

Lemma 19. Let 𝑅 be a (commutative) ring, and 𝐿 ∶ Mod𝑓𝑔
𝑅 → 𝑆𝑒𝑡𝑠 be a functor that preserves

finite products. Then for any 𝑀 ∈ Mod𝑓𝑔
𝑅 , 𝐿(𝑀) has a canonical 𝑅-module structure.

Proof. Let 𝑀 ∈ Mod𝑓𝑔
𝑅 . Write 𝑠 ∶ 𝑀 ×𝑀 → 𝑀 for the addition map, 𝜆𝑟 ∶ 𝑀 → 𝑀 for the scalar

multiplication by 𝑟 ∈ 𝑅, and 𝑧 ∶ 0 → 𝑀 . The module structure on 𝐿(𝑀) is defined using the
images of these morphisms by 𝐿, together with the identification 𝐿(𝑀 × 𝑀) ≅ 𝐿(𝑀) × 𝐿(𝑀),
and the fact that 𝐿(0) is terminal in 𝑆𝑒𝑡𝑠 so it is a singleton. Checking that this defines a
module structure is rather straightforward, by writing suitable commutative diagrams in Mod𝑓𝑔

𝑅
and pushing them with 𝐿.
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Lemma 20. Let 𝑅 be a (commutative) ring, 𝐿 and 𝐿′ ∶ Mod𝑓𝑔
𝑅 → 𝑆𝑒𝑡𝑠 be two functors that

preserve finite products, and 𝜂 ∶ 𝐿 → 𝐿′ a natural transformation. Then for any 𝑀 ∈ Mod𝑓𝑔
𝑅 ,

𝜂𝑀 is 𝑅-linear.

Proof. This is a very simple check.

Lemma 21. Let 𝑅 be a (commutative) ring, 𝐿 and 𝐿′ ∶ Mod𝑓𝑔
𝑅 → 𝑆𝑒𝑡𝑠 be two functors that

preserve finite products, and 𝜂 ∶ 𝐿 → 𝐿′ a natural transformation. Then 𝜂 is an isomorphism if
and only if 𝜂𝑅 is an isomorphism.

Proof. By induction on the dimension.

2.5 Artin Functors
Definition 22. For 𝑅 ∈ ĈΛ and 𝐴 ∈ CΛ, we define a functor CΛ → 𝑆𝑒𝑡𝑠 by ℎ𝑅(𝐴) =
HomĈΛ

(𝑅, 𝐴).

In what follows we will only consider functors 𝐹 from CΛ to 𝑆𝑒𝑡𝑠 that preserve terminal
objects, or equivalently such that 𝐹(𝑘) is a singleton.

Definition 23. We can extend such a functor to ĈΛ by setting for 𝑅 ∈ ĈΛ, ̂𝐹 (𝑅) = lim←− 𝐹(𝑅/𝔪𝑛).
A map 𝑢 ∶ 𝑅 → 𝑆 induces maps 𝑢𝑛 ∶ 𝑅/𝔪𝑛

𝑅 → 𝑆/𝔪𝑛
𝑆 for all 𝑛 ∈ ℕ, so we can also define ̂𝐹 (𝑢)

by using the universal property. This defines a functor ̂𝐹 ∶ ĈΛ → 𝑆𝑒𝑡𝑠.

Lemma 24. There is a natural isomorphism ̂𝐹 |CΛ
≅ 𝐹 .

Proof. If 𝐴 is in CΛ, there exists 𝑁 ∈ ℕ∗ such that 𝔪𝑁
𝐴 = 0, so we have 𝐹(𝐴/𝔪𝑛

𝐴) ≅ 𝐹(𝐴) for
all 𝑛 ≥ 𝑁 .

Definition 25. A pro-couple is a pair (𝑅, 𝜉) where 𝑅 ∈ ĈΛ and 𝜉 ∈ ̂𝐹 (𝑅).
Definition 26. A pro-couple (𝑅, 𝜉) defines a natural transformation 𝜈(𝜉) ∶ ℎ𝑅 → 𝐹 given by
𝑢 ↦ ̂𝐹(𝑢)(𝜉) up to the isomorphism given in lemma 24.

Lemma 27. Let (𝑅, 𝜉) be a pro-couple, 𝐴, 𝐵 ∈ CΛ, 𝑢 ∶ 𝑅 → 𝐴 and 𝑣 ∶ 𝐴 → 𝐵. Then
𝜈(𝜉)(𝑣 ∘ 𝑢) = 𝐹(𝑣)(𝜈(𝜉)(𝑢)).

Proof. This is essentially the naturality of ̂𝐹 |CΛ
≅ 𝐹 .

Lemma 28. Let (𝑅, 𝜉) be a pro-couple, with 𝜉 = (𝜉𝑞)𝑞∈ℕ, 𝑛 ∈ ℕ∗, and 𝑝 ∶ 𝑅 → 𝑅/𝔪𝑛
𝑅 the

quotient map. Then 𝜈(𝜉)(𝑝) = 𝜉𝑛.

Proof. In fact, we have that ̂𝐹 (𝑝) is equal to the projection ̂𝐹 (𝑅) → 𝐹(𝑅/𝔪𝑛
𝑅) composed with

the natural isomorphism 𝐹 ≅ ̂𝐹 |CΛ
. This is a simple check.

In particular, since any map 𝑅 → 𝐴 with 𝐴 ∈ CΛ factorizes through some 𝑢𝑛 ∶ 𝑅/𝔪𝑛 → 𝐴
(theorem 14), we have 𝜈(𝜉)(𝑢) = 𝐹(𝑢𝑛)(𝜉𝑛).
Definition 29. A pro-couple (𝑅, 𝜉) pro-represents 𝐹 if the natural transformation 𝜈(𝜉) ∶ ℎ𝑅 → 𝐹
it induces is an isomorphism. 𝐹 is pro-representable if there exists a pro-couple which pro-
represents 𝐹 .
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Definition 30. Let 𝐹, 𝐺 ∶ CΛ → 𝑆𝑒𝑡𝑠 be two functors that preserve terminal objects. A natural
transformation 𝜂 ∶ 𝐹 → 𝐺 is smooth if for any surjection 𝑝 ∶ 𝐵 → 𝐴 in CΛ, the morphism

𝐹(𝐵) → 𝐹(𝐴) ×𝐺(𝐴) 𝐺(𝐵)

is surjective.

Lemma 31. To check that a natural transformation is smooth, it is enough to check the condition
on morphisms 𝑝 that are small extensions.

Proof. Apply theorem 7. Check that the property is stable by composition (note that the pullback
is in 𝑆𝑒𝑡𝑠).

Lemma 32. Let 𝐹, 𝐺 ∶ CΛ → 𝑆𝑒𝑡𝑠 be two functors that preserve terminal objects. If 𝜂 ∶ 𝐹 → 𝐺
is smooth, then 𝜂𝐴 is surjective for any 𝐴 ∈ CΛ.

Proof. Apply the condition to 𝑝 ∶ 𝐴 → 𝑘 (using that 𝐹(𝑘) and 𝐺(𝑘) are singletons).

Definition 33. The tangent space of a functor 𝐹 is 𝑡𝐹 = 𝐹(𝑘[𝜀]). In the case 𝐹 = ℎ𝑅, we simply
write 𝑡𝑅.

Definition 34. A pro-couple (𝑅, 𝜉) is a hull of 𝐹 if the natural transformation 𝜈(𝜉) ∶ ℎ𝑅 → 𝐹
it induces is smooth and 𝜈(𝜉)𝑘[𝜀] ∶ 𝑡𝑅 → 𝑡𝐹 is an isomorphism.

Note that if 𝜂 ∶ 𝐹 → 𝐺 is an isomorphism on 𝑘[𝜀], then it is an isomorphism on 𝑘[𝑉 ] for any
finite dimensional 𝑘-vector space (lemma 21).

2.6 Schlessinger’s conditions
Let 𝐹 be a functor from CΛ to 𝑆𝑒𝑡𝑠 such that 𝐹(𝑘) is a singleton. For 𝑓 ∶ 𝑋 → 𝑍 and 𝐺 ∶ 𝑌 → 𝑍
morphisms in CΛ, we consider the comparison morphism:

𝑝𝑓,𝑔 ∶ 𝐹 (𝑋 ×𝑍 𝑌 ) → 𝐹(𝑋) ×𝐹(𝑍) 𝐹(𝑌 ) (2.1)

Definition 35. (𝐻1) : if 𝑔 is a small extension then 𝑝𝑓,𝑔 is surjective.

Definition 36. (𝐻2) : if 𝑍 = 𝑘 and 𝑌 = 𝑘[𝜀] then 𝑝𝑓,𝑔 is bijective.

Definition 37. (𝐻3) : assuming (𝐻2), dim𝑘(𝑡𝐹 ) < ∞.

Definition 38. (𝐻4) : if 𝑓 is a small extension then 𝑝𝑓,𝑓 is bijective.

These conditions are on the functor 𝐹 , so for example ”𝐹 satisfies (𝐻1)” means that for any
morphisms 𝑓 and 𝑔, if 𝑔 is a small extension, then 𝑝𝑓,𝑔 is surjective.

Lemma 39. The definition of (𝐻3) makes sense because the condition (𝐻2) implies that 𝐹
verifies the hypothesis of lemma 18, so that 𝑡𝐹 admits a canonical 𝑘-vector space structure.

Proof.

In fact, we have the following result:

Lemma 40. If 𝐹 satisfies (𝐻2), we have 𝐹(𝐴 × 𝑘[𝑉 ]) ≅ 𝐹(𝐴) × 𝐹(𝑘[𝑉 ]) for any 𝐴 ∈ CΛ and
any 𝑉 ∈ Mod𝑓𝑔

𝑘 .
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Proof. By induction on the dimension of 𝑉 .

We also have the following generalization from (𝐻1):
Lemma 41. If 𝐹 satisfies (𝐻1), then 𝑝𝑓,𝑔 is surjective for any surjection 𝑔.

Proof. A surjection 𝑔 is either an isomorphism or it can be factored as a composition of small
extensions. The result is clear for isomorphisms and we can show that if 𝑔1 and 𝑔2 are two
suitable morphisms such that 𝑝𝑓,𝑔1

and 𝑝𝑓,𝑔2
are surjective then 𝑝𝑓,𝑔2∘𝑔1

is surjective as well.

We will also need the following fact:

Lemma 42. The functor ℎ𝑅 satisfies conditions (𝐻1), (𝐻2), (𝐻3) and (𝐻4).
Proof. In fact in this case (𝐻1), (𝐻2) and (𝐻4) hold trivially since 𝑝𝑓,𝑔 is an isomorphism for
any morphisms 𝑓 and 𝑔, because ℎ𝑅 is a hom-functor, and pullbacks in CΛ are pullbacks in ĈΛ.
For (𝐻3), it suffices to show the following linear isomorphism 𝑡∗

𝑅 ≅ 𝔪𝑅/(𝔪2
𝑅 + 𝔪Λ𝑅).
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Chapter 3

Schlessinger’s theorem

Let 𝐹 be a functor from CΛ to 𝑆𝑒𝑡𝑠 such that 𝐹(𝑘) is a singleton.

Theorem 43. If 𝐹 satisfies (𝐻1), (𝐻2) and (𝐻3), then 𝐹 admits a hull.

Theorem 44. If 𝐹 admits a hull, then 𝐹 satisfies (𝐻1), (𝐻2) and (𝐻3).
Theorem 45. If 𝐹 satisfies (𝐻1), (𝐻2), (𝐻3) and (𝐻4), then 𝐹 is pro-representable.

Theorem 46. If 𝐹 is pro-representable, then 𝐹 satisfies (𝐻1), (𝐻2), (𝐻3) and (𝐻4).
Proof. ℎ𝑅 satisfies all four conditions as noted in theorem 42, so this is trivial (using theorem 20
for (𝐻3)).

The main difficulty is the backward direction of (1).
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Chapter 4

Lemmas

We now give some additional lemmas needed for the proof.

4.1 Essential morphisms
Definition 47. A surjective morphism 𝑝 ∶ 𝐵 → 𝐴 in CΛ is essential if for any morphism
𝑞 ∶ 𝐶 → 𝐵 such that 𝑞 ∘ 𝑝 is surjective, 𝑞 is surjective.

Lemma 48. Let 𝑝 ∶ 𝐵 → 𝐴 be essential and 𝑞 ∶ 𝐶 → 𝐵 be a morphism in ĈΛ such that 𝑞 ∘ 𝑝 is
surjective. Then 𝑞 is surjective.

Proof. This is trivial considering that 𝑞 factorizes through 𝑞𝑛 ∶ 𝐶/𝔪𝑛
𝐶 → 𝐵 for some 𝑛 which is

a morphism in CΛ (theorem 14).

Lemma 49. If 𝑝 ∶ 𝐵 → 𝐴 is a small extension, then 𝑝 is not essential if and only if 𝑝 admits a
section, that is there exists a morphism 𝑠 ∶ 𝐴 → 𝐵 such that 𝑝 ∘ 𝑠 = 𝟙𝐴.

Proof. If 𝑝 has a section 𝑠, then 𝑝 is not essential since 𝑠 is not surjective as we have lengthΛ(𝐵) =
lengthΛ(𝐴) + 1.

Now, suppose that 𝑝 is not essential, and let 𝑞 ∶ 𝐶 → 𝐵 be such that 𝑞 ∘ 𝑝 is surjective but
𝑞 is not. Let 𝐶′ be the range of 𝑞. We have lengthΛ(𝐶′) < lengthΛ(𝐵) since 𝑞 is not surjective
so lengthΛ(𝐶′) ≤ lengthΛ(𝐴), and lengthΛ(𝐶′) ≥ lengthΛ(𝐴) because 𝑝|𝐶′ is surjective (because
𝑞 ∘ 𝑝 is). Thus 𝑝|𝐶′ is bijective which gives the section that we wanted.

4.2 Action of a small extension
Let 𝑝 ∶ 𝐵 → 𝐴 be a small extension in CΛ, and write 𝐼 = ker 𝑝.

Lemma 50. There is an isomorphism 𝐵 × 𝑘[𝐼] ≅ 𝐵 ×𝐴 𝐵 whose first component is the identity.

Proof. It is given by (𝑥, 𝑟 + 𝑦) ↦ (𝑥, 𝑥 + 𝑦). The inverse map is (𝑥, 𝑦) ↦ (𝑥, 𝑥0 + 𝑦 − 𝑥) where
𝑥0 is the 𝑘 residue of 𝑥. It is easy to check that this defines an isomorphism.

Using this isomorphism, we can get the following result as in [?, Remark 2.15]:
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Lemma 51. Let 𝐹 ∶ CΛ → 𝑆𝑒𝑡𝑠 such that 𝐹(𝑘) is a singleton and 𝐹 satisfies (𝐻2). Using the
isomorphism from lemma 50 together with the comparison maps (eq. (2.1)), we get a map

𝐹(𝐵) × 𝐹(𝑘[𝐼]) → 𝐹(𝐵) ×𝐹(𝐴) 𝐹(𝐵)

This defines an action of 𝐹(𝑘[𝐼]) on 𝐹(𝐵), with orbits contained in the fibers of 𝑝.

Proof. This is simply a formal check. In practice we only need the fact that 0 acts trivially, so
there is less to check.

Lemma 52. The condition (𝐻1) implies that the map in theorem 51 is surjective, i.e. the action
is transitive on fibers of 𝑝.

Proof.

Lemma 53. The condition (𝐻4) implies that the map in theorem 51 is bijective, i.e. the fibers
of 𝑝 are principal homogeneous spaces under 𝐹(𝑘[𝐼]).
Proof.

Lemma 54. The action defined in theorem 51 is functorial: if 𝐺 is another functor with the
necessary conditions, and 𝜂 ∶ 𝐹 → 𝐺 is a natural transformation, then the following diagram
commutes:

𝐺(𝐵) × 𝐺(𝑘[𝐼]) 𝐺(𝐵) ×𝐺(𝐴) 𝐺(𝐵)

𝐹(𝐵) × 𝐹(𝑘[𝐼]) 𝐹(𝐵) ×𝐹(𝐴) 𝐹(𝐵)

Proof.

4.3 Topology
We need the following lemma [?, Tag 06SE]:

Lemma 55. Let 𝑅 be an object of ĈΛ, and let (𝐽𝑛)𝑛∈ℕ be a decreasing sequence of ideals of
𝑅 such that 𝔪𝑛

𝑅 ≤ 𝐽𝑛. Set 𝐽 = ⋂𝑛∈ℕ 𝐽𝑛. Then the sequence (𝐽𝑛/𝐽)𝑛∈ℕ defines the 𝔪𝑅/𝐽 -adic
topology on 𝑅/𝐽 .

Proof. We need to show that for any 𝑛 ∈ ℕ, there exists 𝑁 ∈ ℕ such that 𝐽𝑁 ≤ 𝐽 + 𝔪𝑛
𝑅.

For every 𝑘 ∈ ℕ, 𝑅/𝔪𝑘
𝑅 is Artinian, so the decreasing sequence (𝐽𝑖 + 𝔪𝑘

𝑅)𝑖∈ℕ stabilizes. We
write 𝑁𝑘 for some index such that 𝐽𝑁𝑘

+ 𝔪𝑘
𝑅 is the minimum of the sequence. Note that we

have 𝐽𝑁𝑘
+ 𝔪𝑘

𝑅 ≤ 𝐽𝑘 + 𝔪𝑘
𝑅 so since we also have 𝔪𝑘

𝑅 ≤ 𝐽𝑘 we get that 𝐽𝑁𝑘
≤ 𝐽𝑘. We claim

that 𝐽𝑁𝑛
≤ 𝐽 + 𝔪𝑛

𝑅. Let 𝑥 ∈ 𝐽𝑁𝑛
. We define a Cauchy sequence (𝑥𝑖) in 𝑅 with 𝑥𝑖 ∈ 𝐽𝑁𝑖

for
𝑖 ≥ 𝑛 by induction, by first setting 𝑥𝑖 = 𝑥 if 𝑖 ≤ 𝑛. If 𝑖 > 𝑛, then there exists 𝑥𝑖+1 ∈ 𝐽𝑁𝑖+1
such that 𝑥𝑖 − 𝑥𝑖+1 ∈ 𝔪𝑖

𝑅: indeed if 𝑁𝑖+1 ≤ 𝑁𝑖 we can take 𝑥𝑖+1 = 𝑥𝑖, and otherwise we have
𝐽𝑁𝑖+1

+ 𝔪𝑖
𝑅 = 𝐽𝑁𝑖

+ 𝔪𝑖
𝑅 (note that have 𝑥𝑖 ∈ 𝐽𝑁𝑖

). Since 𝑅 is complete, this sequence admits a
limit 𝑦. We have 𝑦 ∈ 𝐽𝑁𝑖

+ 𝔪𝑖
𝑅 for all 𝑖 so 𝑦 ∈ 𝐽 and 𝑦 − 𝑥 = 𝑦 − 𝑥𝑛 ∈ 𝔪𝑛

𝑅, so 𝑥 ∈ 𝐽 + 𝔪𝑛
𝑅.

In particular, this means that if 𝐽 ≠ 𝑅, we have ̂𝐹 (𝑅/𝐽) ≅ lim←− 𝐹(𝑅/𝐽𝑛).
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Chapter 5

Proof

In this section we prove the main theorem (chapter 3).

5.1 Existence of a hull
The main proof is the following, showing the existence of a hull given (𝐻1), (𝐻2) and (𝐻3).
Proof.

Suppose that 𝐹 satisfies (𝐻1), (𝐻2) and (𝐻3). Let 𝑟 = dim𝑘(𝑡𝐹 ), 𝑆 = Λ[[𝑋1, … , 𝑋𝑟]] and 𝔫
the maximal ideal of 𝑆.

We first construct 𝑅 as a projective limit of quotients of 𝑆. More specifically we define a
sequence (𝐽𝑞, 𝜉𝑞)𝑞≥2 by induction where (𝐽𝑞) is a decreasing sequence of ideals of 𝑆 such that
𝑅𝑞 = 𝑆/𝐽𝑞 ∈ CΛ and 𝜉𝑞 ∈ 𝐹(𝑅𝑞) is such that (𝜉𝑞) ∈ lim←− 𝐹(𝑅𝑞).

First we set 𝐽2 = 𝔫2 + 𝔪Λ𝑆 and 𝑅2 = 𝑆/𝐽2.
There exists 𝜉2 ∈ 𝑅2 inducing an isomorphism Hom(𝑅2, 𝑘[𝜀]) ≅ 𝑡𝐹 . To see this, first note that

𝑅2 ≅ 𝑘[𝑘𝑟] ≅ 𝑘[𝜀]𝑟. By applying (𝐻2), this yields 𝐹(𝑅2) ≅ 𝑡𝑟
𝐹 , so choosing a basis (𝑒1, … , 𝑒𝑟)

of 𝑡𝐹 gives an element 𝜉2 ∈ 𝐹(𝑅2). We then check that 𝑢 ↦ 𝐹(𝑢)(𝜉2) is an isomorphism. In
fact, this map is linear and sends the morphism 𝑅2 → 𝑘[𝜀] corresponding to the 𝑖-th projection
𝑘𝑟 → 𝑘 to 𝑒𝑖.

For the induction step, suppose that we have an ideal 𝐽𝑞 such that 𝑅𝑞 = 𝑆/𝐽𝑞 ∈ CΛ and
𝜉𝑞 ∈ 𝐹(𝑅𝑞). Consider the set 𝒮 of ideals 𝐽 of 𝑆 such that 𝔫𝐽𝑞 ≤ 𝐽 ≤ 𝐽𝑞 and 𝜉𝑞 lifts to 𝐹(𝑆/𝐽).
We will set 𝐽𝑞+1 to be the minimum of 𝒮, with 𝜉𝑞+1 some lift of 𝜉𝑞, after proving that it exists.
First note that 𝒮 is not empty as it contains 𝐽𝑞, and since 𝑆/𝔫𝐽𝑞 is Artinian, we know that 𝒮
admits a minimal element, so we only need to show that 𝒮 is stable by pairwise intersection to get
a minimum. Let 𝐽 and 𝐾 be two elements of 𝒮. The elements of 𝒮 are in correspondence with
𝑘-vector subspaces of 𝐽/𝔫𝐽𝑞, so we can extend 𝐽 into some ideal 𝐽 ′ ≤ 𝐽𝑞 such that 𝐽 ′∩𝐾 = 𝐽 ∩𝐾
and 𝐽 ′ + 𝐾 = 𝐽𝑞, and we have 𝐽 ′ ∈ 𝒮 because 𝐽 ≤ 𝐽 ′. We now use the isomorphism

𝑆/𝐽 ′ ×𝑆/𝐽𝑞
𝑆/𝐾 ≅ 𝑆/(𝐽 ∩ 𝐾)

together with theorem 41 to conclude that 𝜉𝑞 lifts to 𝑆/(𝐽 ∩ 𝐾), i.e. that 𝐽 ∩ 𝐾 ∈ 𝒮, which
concludes the induction step.

We set 𝐽 = ⋂𝑞≥2 𝐽𝑞 and 𝑅 = 𝑆/𝐽 . By definition of the 𝐽𝑞’s, we have 𝔫𝑞 ≤ 𝐽𝑞, so theorem 55
applies and ̂𝐹 (𝑅) = lim←− 𝐹(𝑆/𝐽𝑞), so we can set 𝜉 = lim←− 𝜉𝑞 ∈ ̂𝐹 (𝑅).
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We have Hom(𝑅, 𝑘[𝜀]) ≅ Hom(𝑅2, 𝑘[𝜀]) because any map 𝑆 → 𝑘[𝜀] factorizes through 𝑆/𝐽2,
and since 𝜉 projects to 𝜉2 we have 𝑡𝑅 ≅ 𝑡𝐹 by definition of 𝜉2.

It remains to show that 𝜈(𝜉) ∶ ℎ𝑅 → 𝐹 is smooth.
Using theorem 31, let 𝑝 ∶ 𝐴′ → 𝐴 be a small extension, 𝑢 ∶ 𝑅 → 𝐴, 𝜂′ ∈ 𝐹(𝐴′) and 𝜂 ∈ 𝐹(𝐴)

such that 𝜈(𝜉)(𝑢) = 𝐹(𝑝)(𝜂′) = 𝜂. We need to find 𝑢′ ∶ 𝑅 → 𝐴′ such that 𝜈(𝜉)(𝑢′) = 𝜂′ and
𝑝 ∘ 𝑢′ = 𝑢.

First we reduce this to finding 𝑢″ ∶ 𝑅 → 𝐴′ such that 𝑝 ∘ 𝑢″ = 𝑢. Indeed, if we have such
a 𝑢″, then 𝜈(𝜉)(𝑢″) and 𝜂′ both lie over 𝜂, so by theorem 52, there exists 𝜎 ∈ 𝐹(𝑘[𝐼]) sending
𝜈(𝜉)(𝑢″) to 𝜂′, where 𝐼 = ker 𝑝. By using theorem 54 and the fact that ℎ𝑅(𝑘[𝐼]) ≅ 𝐹(𝑘[𝐼]) (using
theorem 21), we can also apply 𝜎 to 𝑢″ giving us the 𝑢′ ∶ 𝑅 → 𝐴′ that we wanted.

Since 𝑢 factorizes through 𝑅/𝔪𝑛
𝑅 → 𝐴 for some 𝑛, and the topology is induced by the 𝐽𝑞’s

(theorem 55), 𝑢 factorizes through 𝑅𝑞 → 𝐴 for some 𝑞. It suffices to find 𝑣 completing the
following diagram:

𝑆 𝑅𝑞 ×𝐴 𝐴′

𝑅𝑞+1 𝑅𝑞

𝑤

𝑝𝑟1𝑣

where 𝑤 is defined using the universal property of 𝑆 = Λ[[𝑋1, … , 𝑋𝑟]] to make the diagram
commute. More specifically, to define 𝑤 we use that 𝑝𝑟1 is surjective so that we can first define
𝑤 on the 𝑋𝑖’s, and since all maps are local the images of the 𝑋𝑖’s are in the maximal ideal so
we can extend the map to 𝑆. In this context we can easily show that 𝑝𝑟1 is a small extension, so
we can apply theorem 49. If 𝑝𝑟1 admits a section then we are done. Otherwise, 𝑝𝑟1 is essential,
and 𝑝𝑟1 ∘ 𝑤 is the quotient map 𝑆 → 𝑅𝑞, so 𝑤 is surjective by theorem 48. By (𝐻1), 𝜉𝑞 lifts to
𝑅𝑞 ×𝐴 𝐴′, so ker 𝑤 ∈ 𝒮 and by minimality we have 𝐽𝑞+1 ≤ ker 𝑤. Thus 𝑤 factors through 𝑅𝑞+1
giving the 𝑣 that we wanted.

5.2 Necessity of the conditions
We now prove that the conditions (𝐻1), (𝐻2) and (𝐻3) are necessary for the existence of a hull.

Proof. Suppose that 𝐹 admits a hull (𝑅, 𝜉).
First since 𝑡𝑅 ≅ 𝑡𝐹 (linearly by theorem 20), and ℎ𝑅 satisfies (𝐻3), 𝐹 satisfies (𝐻3).
To check (𝐻1), let 𝑓 ∶ 𝑋 → 𝑍 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms in CΛ with 𝑔 surjective, and

𝑥 ∈ 𝐹(𝑋) and 𝑦 ∈ 𝐹(𝑌 ) both lying over 𝑧 ∈ 𝐹(𝑍). First, since ℎ𝑅 → 𝐹 is smooth, by theorem 32
there exists 𝑢𝑥 ∶ 𝑅 → 𝑋 such that 𝜈(𝜉)(𝑢𝑥) = 𝑥. Then by smoothness applied to 𝑔, there exists
𝑢𝑦 ∶ 𝑅 → 𝑌 such that 𝜈(𝜉)(𝑢𝑦) = 𝑦 and 𝑔 ∘𝑢𝑦 = 𝑓 ∘𝑢𝑥. Then 𝜈(𝜉)(𝑢𝑥 ×𝑢𝑦) ∈ 𝐹(𝑋 ×𝑍 𝑌 ) projects
to 𝑥 and 𝑦, so 𝑝𝑓,𝑔 is surjective.

To check (𝐻2), we now only need to check injectivity, since we have already shown (𝐻1). Let
𝐴 ∈ CΛ and 𝜁1 and 𝜁2 in 𝐹(𝐴 × 𝑘[𝜀]) having the same projections 𝑎 ∈ 𝐹(𝐴) and 𝑒 ∈ 𝑘[𝜀]. We
proceed similarly as in the proof of (𝐻1). First there is 𝑢′ ∶ 𝑅 → 𝐴 such that 𝜈(𝜉)(𝑢′) = 𝑎. Then
by smoothness applied to the projection 𝑝𝑟1 ∶ 𝐴 × 𝑘[𝜀] → 𝐴, we get maps 𝑢𝑖 ∶ 𝑅 → 𝐴 × 𝑘[𝜀] for
𝑖 = 1, 2 such that 𝜈(𝜉)(𝑢𝑖) = 𝜁𝑖 and 𝑝𝑟1 ∘ 𝑢𝑖 = 𝑢′. Since 𝜈(𝜉)(𝑝𝑟2 ∘ 𝑢𝑖) = 𝑒 in both cases, and
𝜈(𝜉)𝑘[𝜀] is an isomorphism, we have 𝑢1 = 𝑢2 so 𝜁1 = 𝜁2.
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5.3 Pro-representability
We finally prove that the conditions (𝐻1), (𝐻2), (𝐻3) and (𝐻4) are sufficient for pro-representability.

Proof. Suppose that 𝐹 satisfies (𝐻1), (𝐻2), (𝐻3) and (𝐻4). By the first point of the theorem,
we know that 𝐹 admits a hull (𝑅, 𝜉). Furthermore, since 𝜈(𝜉) is smooth, we already know that
𝜈(𝜉)𝐴 is surjective for all 𝐴 ∈ CΛ (theorem 32). We will show by induction on lengthΛ(𝐴) that it
is injective, using ??. If 𝐴 = 𝑘, then this is true by definition of a hull. Otherwise, let 𝑝 ∶ 𝐵 → 𝐴
be a small extension, with 𝐼 = ker 𝑝, and suppose that 𝜈(𝜉)𝐴 is an isomorphism. By applying
theorem 53 together with theorem 54, it is easy check that 𝜈(𝜉)𝐵 is injective. Namely we take 𝑢1
and 𝑢2 in ℎ𝑅(𝐵) such that 𝜈(𝜉)(𝑢1) = 𝜈(𝜉)(𝑢2), and we need to show that the action of ℎ𝑅(𝑘[𝐼])
by 0 sends 𝑢1 to 𝑢2, which is clear from the commutative diagram in theorem 54.
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Chapter 6

Remaining sorry’s

Here is the list of all the remaining Lean statements using sorry at the time of writing, with a
mathematical description and some ideas for the proofs.

theorem 21

Lemma 56. Let 𝑅 be a Noetherian ring. Then 𝑅[[𝑋]] is Noetherian.

This is necessary for section 5.1 especially to show that some quotients of 𝑆 = Λ[[𝑋1, … , 𝑋𝑟]]
are in CΛ. This is an important result that is currently missing from Mathlib. I have heard that
someone was working on this, so I shouldn’t need to prove this.

Lemma 57. Let 𝑅 be a local ring, 𝔪 its maximal ideal, 𝑟, 𝑘 ∈ ℕ, 𝔫 the maximal ideal of
𝑅[[𝑋1, ⋯ , 𝑋𝑟]] and 𝑥 = (𝑥𝑛)𝑛∈ℕ𝑟 ∈ 𝑅[[𝑋1, ⋯ , 𝑋𝑟]]. Then 𝑥 ∈ 𝔫𝑘 ⟺ ∀𝑛 ∈ ℕ𝑟, 𝑥𝑛 ∈ 𝔪𝑘−deg(𝑛).

Proof. The forward direction is easy. The converse should probably be shown by induction on 𝑟
(and 𝑘).

This lemma is very important to deal with 𝑆 = Λ[[𝑋1, … , 𝑋𝑟]], for example to show that 𝑆
is complete when Λ is and to show that 𝑅2 ≅ 𝑘[𝑘𝑟] in section 5.1.

Lemma 58. The functor ℎ𝑅 (see theorem 22) preserves pullbacks.

See theorem 42.

Proof. It suffices to show that the inclusion functor preserves pullbacks.

Lemma 59. The functor ℎ𝑅 satisfies (𝐻3).
See theorem 42.

Proof. I have shown that ℎ𝑅(𝑘[𝜀]) = 𝐻𝑜𝑚(𝑅, 𝑘[𝜀]) ≅ 𝐷𝑒𝑟Λ(𝑅, 𝑘[𝜀]) ≅ (𝔪𝑅/(𝔪2
𝑅 + 𝔪Λ𝑅))∗. The

main missing part is the linearity of the first bijection. The fact that 𝔪𝑅/(𝔪2
𝑅 + 𝔪Λ𝑅) is finite

dimensional is also missing for now.

Lemma 60. The map 𝐻𝑜𝑚(𝑘𝑟, 𝑘) → 𝐻𝑜𝑚(𝑘[𝑘𝑟], 𝑘[𝜀]) is 𝑘-linear (𝑟 ∈ ℕ). (𝑘 here is the residue
field of Λ)

The vector space structure on 𝐻𝑜𝑚(𝑘[𝑘𝑟], 𝑘[𝜀]) here is the one induced by the coyoneda
functor 𝐻𝑜𝑚(𝑘[𝑘𝑟], −) (theorem 18). This is somewhat similar to the previous point, where the
abstract vector space structure is the main issue. This is used in section 5.1 to show the existence
of 𝜉2.
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Lemma 61. Let 𝑅 be a Λ-algebra, and 𝐽, 𝐾 ideals of 𝑅. Then,

𝑅/𝐽 ×𝑅/(𝐽+𝐾) 𝑅/𝐾 ≅ 𝑅/(𝐽 ∩ 𝐾)

This is the easiest sorry.

Lemma 62. In the proof of the theorem, we have 𝑟 ∈ ℕ, 𝑆 = Λ[[𝑋1, ⋯ , 𝑋𝑟]], and 𝐽 ≠ 𝑆 an
ideal of 𝑆. 𝑆/𝐽 is complete (as a local ring).

This is needed for section 5.1. It is essentially a topological result that is in Mathlib (as ),
however it is stated here in a way that doesn’t mention topology, and in fact the topology has
not been defined at all in Lean yet.

theorem 44 Only (𝐻3) has been shown for now. The proof is described in section 5.2.
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