3 Schlessinger’s theorem
Let \(F\) be a functor from \(\mathbf{C}_\Lambda \) to \(Sets\) such that \(F(k)\) is a singleton.
If \(F\) satisfies \((H_1)\), \((H_2)\) and \((H_3)\), then \(F\) admits a hull.
If \(F\) admits a hull, then \(F\) satisfies \((H_1)\), \((H_2)\) and \((H_3)\).
If \(F\) satisfies \((H_1)\), \((H_2)\), \((H_3)\) and \((H_4)\), then \(F\) is pro-representable.
If \(F\) is pro-representable, then \(F\) satisfies \((H_1)\), \((H_2)\), \((H_3)\) and \((H_4)\).
Proof
The main difficulty is the backward direction of \((1)\).