Documentation

Schlessinger.Categories.VectorSpace

@[reducible, inline]
abbrev vs.prod {R : Type u} [CommRing R] (M N : FGModuleCat R) :
Equations
Instances For
    def vs.fst {R : Type u} [CommRing R] (M N : FGModuleCat R) :
    FGModuleCat.of R (M × N) FGModuleCat.of R M
    Equations
    Instances For
      def vs.snd {R : Type u} [CommRing R] (M N : FGModuleCat R) :
      FGModuleCat.of R (M × N) FGModuleCat.of R N
      Equations
      Instances For
        def vs.lift {R : Type u} [CommRing R] {M N M' : FGModuleCat R} (f : M' M) (g : M' N) :
        FGModuleCat.of R M'.obj FGModuleCat.of R (M.obj × N.obj)
        Equations
        Instances For
          def vs.map {R : Type u} [CommRing R] {M N M' N' : FGModuleCat R} (f : M' M) (g : N' N) :
          FGModuleCat.of R (M'.obj × N'.obj) FGModuleCat.of R (M.obj × N.obj)
          Equations
          Instances For
            @[simp]
            theorem vs.lift_fst {R : Type u} [CommRing R] (M N : FGModuleCat R) {M' : FGModuleCat R} (f : M' M) (g : M' N) :
            @[simp]
            theorem vs.lift_snd {R : Type u} [CommRing R] (M N : FGModuleCat R) {M' : FGModuleCat R} (f : M' M) (g : M' N) :
            @[simp]
            theorem vs.map_fst {R : Type u} [CommRing R] (M N : FGModuleCat R) {M' N' : FGModuleCat R} (f : M' M) (g : N' N) :
            @[simp]
            theorem vs.map_snd {R : Type u} [CommRing R] (M N : FGModuleCat R) {M' N' : FGModuleCat R} (f : M' M) (g : N' N) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem vs.cone_cone_pt_obj_isAddCommGroup_sub {R : Type u} [CommRing R] (M N : FGModuleCat R) (p q : M × N) :
              p - q = (p.1 - q.1, p.2 - q.2)
              @[simp]
              @[simp]
              theorem vs.cone_cone_pt_obj_isModule_smul {R : Type u} [CommRing R] (M N : FGModuleCat R) (a : R) (p : M × N) :
              SMul.smul a p = (a p.1, a p.2)
              @[simp]
              theorem vs.cone_cone_pt_obj_carrier {R : Type u} [CommRing R] (M N : FGModuleCat R) :
              (cone M N).cone.pt.obj = (M × N)
              @[simp]
              theorem vs.cone_cone_pt_obj_isAddCommGroup_add {R : Type u} [CommRing R] (M N : FGModuleCat R) (p q : M × N) :
              p + q = (p.1 + q.1, p.2 + q.2)
              @[simp]
              theorem vs.cone_cone_pt_obj_isAddCommGroup_neg {R : Type u} [CommRing R] (M N : FGModuleCat R) (p : M × N) :
              -p = (-p.1, -p.2)
              @[simp]
              theorem vs.cone_cone_pt_obj_isAddCommGroup_zsmul {R : Type u} [CommRing R] (M N : FGModuleCat R) (z : ) (a : M × N) :
              z a = (z a.1, z a.2)
              @[simp]
              theorem vs.cone_cone_pt_obj_isAddCommGroup_nsmul {R : Type u} [CommRing R] (M N : FGModuleCat R) (z : ) (a : M × N) :
              z a = (z a.1, z a.2)
              def vs.swap {R : Type u} [CommRing R] (M N : FGModuleCat R) :
              prod M N prod N M
              Equations
              Instances For
                @[simp]
                @[simp]
                def vs.assoc {R : Type u} [CommRing R] (M N P : FGModuleCat R) :
                prod (prod M N) P prod M (prod N P)
                Equations
                Instances For
                  def vs.inl {R : Type u} [CommRing R] (M N : FGModuleCat R) :
                  FGModuleCat.of R M FGModuleCat.of R (M × N)
                  Equations
                  Instances For
                    @[simp]
                    theorem vs.inl_snd {R : Type u} [CommRing R] (M N : FGModuleCat R) :
                    def vs.inr {R : Type u} [CommRing R] (M N : FGModuleCat R) :
                    FGModuleCat.of R N FGModuleCat.of R (M × N)
                    Equations
                    Instances For
                      @[simp]
                      theorem vs.inr_snd {R : Type u} [CommRing R] (M N : FGModuleCat R) :
                      def vs.smul_hom {R : Type u} [CommRing R] (M : FGModuleCat R) (a : R) :
                      Equations
                      Instances For
                        @[simp]
                        theorem vs.smul_hom_hom_apply {R : Type u} [CommRing R] (M : FGModuleCat R) (a : R) (a✝ : M) :
                        (ModuleCat.Hom.hom (smul_hom M a)) a✝ = a a✝
                        @[simp]
                        theorem vs.smul_hom_zero {R : Type u} [CommRing R] (M : FGModuleCat R) :
                        smul_hom M 0 = 0
                        @[simp]
                        theorem vs.add_hom_hom_apply {R : Type u} [CommRing R] (M : FGModuleCat R) (a : M × M) :
                        (ModuleCat.Hom.hom (add_hom M)) a = a.1 + a.2
                        def vs.zero_hom {R : Type u} [CommRing R] (M N : FGModuleCat R) :
                        M N
                        Equations
                        Instances For
                          @[simp]
                          theorem vs.zero_hom_hom_apply {R : Type u} [CommRing R] (M N : FGModuleCat R) (a✝ : M.obj) :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            noncomputable def vs.iso {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] :
                            L.obj (prod M N) L.obj M × L.obj N
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem vs.iso_inv_fst_apply {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x : L.obj M × L.obj N) :
                              L.map (fst M N) ((iso L M N).inv x) = x.1
                              @[simp]
                              theorem vs.iso_inv_snd_apply {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x : L.obj M × L.obj N) :
                              L.map (snd M N) ((iso L M N).inv x) = x.2
                              theorem vs.iso_map {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (M' N' : FGModuleCat R) (x : L.obj M) (y : L.obj N) (f : M M') (g : N N') :
                              (iso L M' N').inv (L.map f x, L.map g y) = L.map (map f g) ((iso L M N).inv (x, y))
                              theorem vs.iso_map_1 {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (M' : FGModuleCat R) (x : L.obj M) (y : L.obj N) (f : M M') :
                              (iso L M' N).inv (L.map f x, y) = L.map (map f (CategoryTheory.CategoryStruct.id N)) ((iso L M N).inv (x, y))
                              theorem vs.iso_map_2 {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (N' : FGModuleCat R) (x : L.obj M) (y : L.obj N) (g : N N') :
                              (iso L M N').inv (x, L.map g y) = L.map (map (CategoryTheory.CategoryStruct.id M) g) ((iso L M N).inv (x, y))
                              Equations
                              theorem vs.smul_def {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M : FGModuleCat R) (a : R) (x : L.obj M) :
                              a x = L.map (smul_hom M a) x
                              @[simp]
                              theorem vs.carrier_of {R : Type u} [CommRing R] (V : FGModuleCat R) :
                              FGModuleCat.of R V = V
                              @[simp]
                              theorem vs.swapiso {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x : L.obj M × L.obj N) :
                              L.map (swap M N).hom ((iso L M N).inv x) = (iso L N M).inv (x.2, x.1)
                              @[simp]
                              theorem vs.inliso {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x : L.obj M) :
                              L.map (inl M N) x = (iso L M N).inv (x, 0)
                              @[simp]
                              theorem vs.inriso {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M N : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x : L.obj N) :
                              L.map (inr M N) x = (iso L M N).inv (0, x)
                              @[simp]
                              theorem vs.associso {R : Type u} [CommRing R] (L : CategoryTheory.Functor (FGModuleCat R) (Type u)) (M : FGModuleCat R) [CategoryTheory.Limits.PreservesFiniteProducts L] (x y z : L.obj M) :
                              L.map (assoc M M M).hom ((iso L (prod M M) M).inv ((iso L M M).inv (x, y), z)) = (iso L M (prod M M)).inv (x, (iso L M M).inv (y, z))
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Equations
                              Instances For
                                theorem vs.exists_iso_finmodule {R : Type u} [Field R] (M : FGModuleCat R) :
                                ∃ (n : ), Nonempty (M FGModuleCat.of R (Fin nR))