noncomputable def
vs.isTerminalObjZero
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
Instances For
noncomputable instance
vs.instUniqueObjFGModuleCatOfNat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
- vs.fst M N = FGModuleCat.ofHom (LinearMap.fst R ↑M ↑N)
Instances For
Equations
- vs.snd M N = FGModuleCat.ofHom (LinearMap.snd R ↑M ↑N)
Instances For
Equations
- vs.lift f g = FGModuleCat.ofHom ((ModuleCat.Hom.hom f).prod (ModuleCat.Hom.hom g))
Instances For
Equations
- vs.map f g = FGModuleCat.ofHom ((ModuleCat.Hom.hom f).prodMap (ModuleCat.Hom.hom g))
Instances For
@[simp]
theorem
vs.lift_fst
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
{M' : FGModuleCat R}
(f : M' ⟶ M)
(g : M' ⟶ N)
:
@[simp]
theorem
vs.lift_snd
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
{M' : FGModuleCat R}
(f : M' ⟶ M)
(g : M' ⟶ N)
:
@[simp]
theorem
vs.map_fst
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
{M' N' : FGModuleCat R}
(f : M' ⟶ M)
(g : N' ⟶ N)
:
CategoryTheory.CategoryStruct.comp (map f g) (fst M N) = CategoryTheory.CategoryStruct.comp (fst M' N') f
@[simp]
theorem
vs.map_snd
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
{M' N' : FGModuleCat R}
(f : M' ⟶ M)
(g : N' ⟶ N)
:
CategoryTheory.CategoryStruct.comp (map f g) (snd M N) = CategoryTheory.CategoryStruct.comp (snd M' N') g
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
vs.cone_cone_π_app
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
(j : CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
:
@[simp]
theorem
vs.cone_isLimit_lift_hom_apply
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
(s : CategoryTheory.Limits.Cone (CategoryTheory.Limits.pair M N))
(i : ↑s.1.obj)
:
(ModuleCat.Hom.hom ((cone M N).isLimit.lift s)) i = ((ModuleCat.Hom.hom (CategoryTheory.Limits.BinaryFan.fst s)) i, (ModuleCat.Hom.hom (CategoryTheory.Limits.BinaryFan.snd s)) i)
Equations
- vs.swap M N = (LinearEquiv.prodComm R ↑M ↑N).toFGModuleCatIso
Instances For
@[simp]
@[simp]
Equations
- vs.assoc M N P = (LinearEquiv.prodAssoc R ↑M ↑N ↑P).toFGModuleCatIso
Instances For
@[simp]
theorem
vs.assoc_fst
{R : Type u}
[CommRing R]
(M N P : FGModuleCat R)
:
CategoryTheory.CategoryStruct.comp (assoc M N P).hom (fst M (prod N P)) = CategoryTheory.CategoryStruct.comp (fst (prod M N) P) (fst M N)
@[simp]
theorem
vs.assoc_snd_fst
{R : Type u}
[CommRing R]
(M N P : FGModuleCat R)
:
CategoryTheory.CategoryStruct.comp (assoc M N P).hom (CategoryTheory.CategoryStruct.comp (snd M (prod N P)) (fst N P)) = CategoryTheory.CategoryStruct.comp (fst (prod M N) P) (snd M N)
@[simp]
theorem
vs.assoc_snd_snd
{R : Type u}
[CommRing R]
(M N P : FGModuleCat R)
:
CategoryTheory.CategoryStruct.comp (assoc M N P).hom (CategoryTheory.CategoryStruct.comp (snd M (prod N P)) (snd N P)) = snd (prod M N) P
Equations
- vs.inl M N = FGModuleCat.ofHom (LinearMap.inl R ↑M ↑N)
Instances For
@[simp]
theorem
vs.inl_fst
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
:
CategoryTheory.CategoryStruct.comp (inl M N) (fst M N) = CategoryTheory.CategoryStruct.id (FGModuleCat.of R ↑M)
@[simp]
Equations
- vs.inr M N = FGModuleCat.ofHom (LinearMap.inr R ↑M ↑N)
Instances For
@[simp]
theorem
vs.inr_fst
{R : Type u}
[CommRing R]
(M N : FGModuleCat R)
:
CategoryTheory.CategoryStruct.comp (inr M N) (snd M N) = CategoryTheory.CategoryStruct.id (FGModuleCat.of R ↑N)
@[simp]
Equations
- vs.smul_hom M a = FGModuleCat.ofHom (DistribMulAction.toLinearMap R (↑M) a)
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
Equations
- vs.zero_hom M N = 0
Instances For
@[simp]
noncomputable def
vs.islimit_map
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
vs.iso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
vs.iso_hom_fst
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
L.map (fst M N) = CategoryTheory.CategoryStruct.comp (iso L M N).hom
(CategoryTheory.Limits.Types.binaryProductCone (L.obj M) (L.obj N)).fst
theorem
vs.iso_inv_fst
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
CategoryTheory.CategoryStruct.comp (iso L M N).inv (L.map (fst M N)) = (CategoryTheory.Limits.Types.binaryProductCone (L.obj M) (L.obj N)).fst
@[simp]
theorem
vs.iso_inv_fst_apply
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj M × L.obj N)
:
theorem
vs.iso_hom_fst_apply
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj (prod M N))
:
theorem
vs.iso_hom_snd
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
L.map (snd M N) = CategoryTheory.CategoryStruct.comp (iso L M N).hom
(CategoryTheory.Limits.Types.binaryProductCone (L.obj M) (L.obj N)).snd
theorem
vs.iso_inv_snd
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
CategoryTheory.CategoryStruct.comp (iso L M N).inv (L.map (snd M N)) = (CategoryTheory.Limits.Types.binaryProductCone (L.obj M) (L.obj N)).snd
@[simp]
theorem
vs.iso_inv_snd_apply
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj M × L.obj N)
:
theorem
vs.iso_hom_snd_apply
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj (prod M N))
:
theorem
vs.iso_map
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(M' N' : FGModuleCat R)
(x : L.obj M)
(y : L.obj N)
(f : M ⟶ M')
(g : N ⟶ N')
:
theorem
vs.iso_map_1
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(M' : FGModuleCat R)
(x : L.obj M)
(y : L.obj N)
(f : M ⟶ M')
:
theorem
vs.iso_map_2
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(N' : FGModuleCat R)
(x : L.obj M)
(y : L.obj N)
(g : N ⟶ N')
:
instance
vs.instSMulObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
:
Equations
- vs.instSMulObjFGModuleCat_schlessinger L M = { smul := fun (r : R) (x : L.obj M) => L.map (vs.smul_hom M r) x }
theorem
vs.smul_def
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
(a : R)
(x : L.obj M)
:
noncomputable instance
vs.instZeroObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
- vs.instZeroObjFGModuleCat_schlessinger L M = { zero := L.map (vs.zero_hom 0 M) default }
theorem
vs.zero_def
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
noncomputable instance
vs.instAddObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
theorem
vs.add_def
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x y : L.obj M)
:
@[simp]
theorem
vs.addsmul_comm
{R : Type u}
[CommRing R]
(M : FGModuleCat R)
(a b : R)
:
smul_hom M (a + b) = CategoryTheory.CategoryStruct.comp (diag M)
(CategoryTheory.CategoryStruct.comp (map (smul_hom M a) (smul_hom M b)) (add_hom (FGModuleCat.of R ↑M)))
theorem
vs.smuladd_comm
{R : Type u}
[CommRing R]
(M : FGModuleCat R)
(a : R)
:
CategoryTheory.CategoryStruct.comp (add_hom (FGModuleCat.of R ↑M)) (smul_hom (FGModuleCat.of R ↑M) a) = CategoryTheory.CategoryStruct.comp (map (smul_hom M a) (smul_hom M a)) (add_hom M)
@[simp]
theorem
vs.swapiso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj M × L.obj N)
:
@[simp]
theorem
vs.map_zero
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj M)
:
@[simp]
theorem
vs.inliso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj M)
:
@[simp]
theorem
vs.inriso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M N : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj N)
:
@[simp]
theorem
vs.associso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x y z : L.obj M)
:
@[simp]
theorem
vs.diagiso
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
(x : L.obj (FGModuleCat.of R ↑M.obj))
:
noncomputable instance
vs.instAddCommMonoidObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
AddCommMonoid (L.obj M)
Equations
- One or more equations did not get rendered due to their size.
instance
vs.instModuleObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
vs.instAddCommGroupObjFGModuleCat_schlessinger
{R : Type u}
[CommRing R]
(L : CategoryTheory.Functor (FGModuleCat R) (Type u))
(M : FGModuleCat R)
[CategoryTheory.Limits.PreservesFiniteProducts L]
:
AddCommGroup (L.obj M)
def
vs.linmap_of_nattrans
{R : Type u}
[CommRing R]
{L : CategoryTheory.Functor (FGModuleCat R) (Type u)}
[CategoryTheory.Limits.PreservesFiniteProducts L]
{L' : CategoryTheory.Functor (FGModuleCat R) (Type u)}
[CategoryTheory.Limits.PreservesFiniteProducts L']
(η : L ⟶ L')
(M : FGModuleCat R)
:
Equations
- vs.linmap_of_nattrans η M = { toFun := η.app M, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
vs.nattrans_eq_linmap
{R : Type u}
[CommRing R]
{L : CategoryTheory.Functor (FGModuleCat R) (Type u)}
[CategoryTheory.Limits.PreservesFiniteProducts L]
{L' : CategoryTheory.Functor (FGModuleCat R) (Type u)}
[CategoryTheory.Limits.PreservesFiniteProducts L']
(η : L ⟶ L')
(M : FGModuleCat R)
:
theorem
vs.exists_iso_finmodule
{R : Type u}
[Field R]
(M : FGModuleCat R)
:
∃ (n : ℕ), Nonempty (M ≅ FGModuleCat.of R (Fin n → R))
instance
vs.isIso_natTrans_of_isIso_dim1
{R : Type u}
[Field R]
{L L' : CategoryTheory.Functor (FGModuleCat R) (Type u)}
[CategoryTheory.Limits.PreservesFiniteProducts L]
[CategoryTheory.Limits.PreservesFiniteProducts L']
(η : L ⟶ L')
[h : CategoryTheory.IsIso (η.app (FGModuleCat.of R R))]
: