Documentation

Schlessinger.Mathlib.RingTheory.LocalRing.AlgHom.Basic

Local algebra homomorphisms #

We prove basic properties of local algebra homomorphisms.

theorem AlgHom.isLocalHom_of_isLocalHom_toRingHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) [h : IsLocalHom f.toRingHom] :
@[instance 100]
instance AlgHom.isLocalHom_of_isLocalHom_AlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) [IsLocalHom f] :
instance AlgHom.isLocalHom_id {R : Type u_1} [CommSemiring R] (X : Type u_5) [Semiring X] [Algebra R X] :
@[instance 100]
instance AlgHom.isLocalAlgHomtoAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_5} [FunLike F A B] [AlgHomClass F R A B] (f : F) [IsLocalHom f] :
instance AlgHom.isLocalHom_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (g : B →ₐ[R] C) (f : A →ₐ[R] B) [IsLocalHom g] [IsLocalHom f] :
theorem AlgHom.isLocalHom_of_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) [IsLocalHom (g.comp f)] :