Documentation

Schlessinger.Mathlib.RingTheory.MvPowerSeries.Noetherian

def MvPowerSeries.equivCongrLeft (R : Type u_1) (σ : Type u_2) (τ : Type u_3) (e : σ τ) :
Equations
Instances For
    @[simp]
    theorem MvPowerSeries.equivCongrLeft_apply (R : Type u_1) (σ : Type u_2) (τ : Type u_3) (e : σ τ) (f : (σ →₀ ) → R) (a✝ : τ →₀ ) :
    (equivCongrLeft R σ τ e) f a✝ = f (Finsupp.equivMapDomain e.symm a✝)
    @[simp]
    theorem MvPowerSeries.equivCongrLeft_symm_apply (R : Type u_1) (σ : Type u_2) (τ : Type u_3) (e : σ τ) (f : (τ →₀ ) → R) (a✝ : σ →₀ ) :
    (equivCongrLeft R σ τ e).symm f a✝ = f (Finsupp.equivMapDomain e a✝)
    def MvPowerSeries.ringEquivCongrLeft (R : Type u_1) (σ : Type u_2) (τ : Type u_3) [CommRing R] (e : σ τ) :
    Equations
    Instances For
      noncomputable def MvPowerSeries.equivSum (R : Type u_1) (σ : Type u_2) (τ : Type u_3) :
      Equations
      Instances For
        @[simp]
        theorem MvPowerSeries.equivSum_apply (R : Type u_1) (σ : Type u_2) (τ : Type u_3) (a✝ : (σ τ →₀ ) → R) (a✝¹ : σ →₀ ) (a✝² : τ →₀ ) :
        (equivSum R σ τ) a✝ a✝¹ a✝² = a✝ (a✝¹.sumElim a✝²)
        @[simp]
        theorem MvPowerSeries.equivSum_symm_apply (R : Type u_1) (σ : Type u_2) (τ : Type u_3) (a✝ : (σ →₀ ) → (τ →₀ ) → R) (a✝¹ : σ τ →₀ ) :
        (equivSum R σ τ).symm a✝ a✝¹ = a✝ (Finsupp.comapDomain Sum.inl a✝¹ ) (Finsupp.comapDomain Sum.inr a✝¹ )
        noncomputable def MvPowerSeries.auxequiv (σ : Type u_2) (τ : Type u_3) :
        (σ τ →₀ ) × (σ τ →₀ ) ((σ →₀ ) × (σ →₀ )) × (τ →₀ ) × (τ →₀ )
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem MvPowerSeries.auxequiv_apply (σ : Type u_2) (τ : Type u_3) (a✝ : (σ τ →₀ ) × (σ τ →₀ )) :
          @[simp]
          theorem MvPowerSeries.auxequiv_symm_apply (σ : Type u_2) (τ : Type u_3) (a✝ : ((σ →₀ ) × (σ →₀ )) × (τ →₀ ) × (τ →₀ )) :
          (auxequiv σ τ).symm a✝ = (a✝.1.1.sumElim a✝.2.1, a✝.1.2.sumElim a✝.2.2)
          noncomputable def MvPowerSeries.ringEquivSum' (R : Type u_1) (σ : Type u_2) (τ : Type u_3) [CommRing R] :
          Equations
          Instances For
            noncomputable def MvPowerSeries.subsingleton_equiv (R : Type u_1) (σ : Type u_2) [CommRing R] [IsEmpty σ] :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For