Equations
- MvPowerSeries.equivCongrLeft R σ τ e = (Finsupp.equivCongrLeft e).arrowCongr' (Equiv.refl R)
Instances For
def
MvPowerSeries.ringEquivCongrLeft
(R : Type u_1)
(σ : Type u_2)
(τ : Type u_3)
[CommRing R]
(e : σ ≃ τ)
:
Equations
- MvPowerSeries.ringEquivCongrLeft R σ τ e = { toEquiv := MvPowerSeries.equivCongrLeft R σ τ e, map_mul' := ⋯, map_add' := ⋯ }
Instances For
Equations
- MvPowerSeries.equivSum R σ τ = id ((Finsupp.sumFinsuppEquivProdFinsupp.arrowCongr' (Equiv.refl R)).trans (Equiv.curry (σ →₀ ℕ) (τ →₀ ℕ) R))
Instances For
noncomputable def
MvPowerSeries.ringEquivSum'
(R : Type u_1)
(σ : Type u_2)
(τ : Type u_3)
[CommRing R]
:
Equations
- MvPowerSeries.ringEquivSum' R σ τ = { toEquiv := MvPowerSeries.equivSum R σ τ, map_mul' := ⋯, map_add' := ⋯ }
Instances For
noncomputable def
MvPowerSeries.subsingleton_equiv
(R : Type u_1)
(σ : Type u_2)
[CommRing R]
[IsEmpty σ]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
MvPowerSeries.instIsNoetherianRingFin_schlessinger
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
(r : ℕ)
:
IsNoetherianRing (MvPowerSeries (Fin r) R)
instance
MvPowerSeries.instIsNoetherianRingOfFinite_schlessinger
(R : Type u_1)
(σ : Type u_2)
[CommRing R]
[IsNoetherianRing R]
[Finite σ]
: