theorem
Deformation.length_tower
(Λ : Type u_1)
(A : Type u_2)
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
(M : Type u_3)
[AddCommGroup M]
[Module A M]
[Module Λ M]
[IsScalarTower Λ A M]
:
@[simp]
theorem
Deformation.length_residue
(Λ : Type u_1)
(A : Type u_2)
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
[IsLocalRing Λ]
[IsResidueAlgebra Λ A]
:
theorem
Deformation.length_eq
(Λ : Type u_1)
(A : Type u_2)
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
(M : Type u_3)
[AddCommGroup M]
[Module A M]
[Module Λ M]
[IsScalarTower Λ A M]
[IsLocalRing Λ]
[IsResidueAlgebra Λ A]
:
theorem
Deformation.decomposition
(Λ : Type u_1)
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
[IsResidueAlgebra Λ A]
(a : A)
:
∃ (a₁ : Λ), ∃ a₂ ∈ IsLocalRing.maximalIdeal A, (algebraMap Λ A) a₁ + a₂ = a
theorem
Deformation.isNilpotent_maximalIdeal
(A : Type u_2)
[CommRing A]
[IsLocalRing A]
[IsArtinianRing A]
:
theorem
Deformation.isNilpotent_mem_maximalIdeal
{A : Type u_2}
[CommRing A]
[IsLocalRing A]
[IsArtinianRing A]
{x : A}
(h : x ∈ IsLocalRing.maximalIdeal A)
:
instance
Deformation.instIsLocalHomAlgHomOfIsArtinianRing_schlessinger
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsArtinianRing A]
:
theorem
Deformation.comap_maximalIdeal
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsLocalHom f]
:
If f
is a local homomorphism, then f (𝔪 X) ≤ 𝔪 Y
.
def
Deformation.maximalIdeal_map
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsLocalHom f]
:
Equations
Instances For
@[simp]
theorem
Deformation.maximalIdeal_map_apply
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsLocalHom f]
(x : ↥(IsLocalRing.maximalIdeal A))
:
theorem
Deformation.comap_maximalIdeal_pow
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsLocalHom f]
(n : ℕ)
:
If f
is a local homomorphism, then f (𝔪 X ^ n) ≤ 𝔪 Y ^ n
.
theorem
Deformation.maxideal_pow_le_ker_of_artinian
{Λ : Type u_1}
{A : Type u_2}
[CommRing Λ]
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
(f : A →ₐ[Λ] B)
[IsLocalHom f]
[IsArtinianRing B]
:
∃ (n : ℕ), IsLocalRing.maximalIdeal A ^ n ≤ RingHom.ker f
if needed n
is such that (maximalIdeal B ^ n = 0
)
theorem
Deformation.isartinianring_quotient_iff_wellfounded_subtype
(R : Type u_1)
[Ring R]
(I : Ideal R)
[I.IsTwoSided]
:
instance
Deformation.instWellFoundedLTSubtypeIdealLeOfIsArtinianRingQuotient_schlessinger
(R : Type u_1)
[Ring R]
(I : Ideal R)
[I.IsTwoSided]
[IsArtinianRing (R ⧸ I)]
:
theorem
Deformation.isArtinian_of_noetherian_nilpotent
(X : Type u_1)
[CommRing X]
[IsLocalRing X]
[IsNoetherianRing X]
(h : IsNilpotent (IsLocalRing.maximalIdeal X))
: