Documentation

Schlessinger.Categories.Lemma

theorem Deformation.length_eq (Λ : Type u_1) (A : Type u_2) [CommRing Λ] [CommRing A] [Algebra Λ A] [IsLocalRing A] (M : Type u_3) [AddCommGroup M] [Module A M] [Module Λ M] [IsScalarTower Λ A M] [IsLocalRing Λ] [IsResidueAlgebra Λ A] :
theorem Deformation.decomposition (Λ : Type u_1) {A : Type u_2} [CommRing Λ] [CommRing A] [Algebra Λ A] [IsLocalRing A] [IsResidueAlgebra Λ A] (a : A) :
∃ (a₁ : Λ), a₂IsLocalRing.maximalIdeal A, (algebraMap Λ A) a₁ + a₂ = a

If f is a local homomorphism, then f (𝔪 X) ≤ 𝔪 Y.

@[simp]
theorem Deformation.maximalIdeal_map_apply {Λ : Type u_1} {A : Type u_2} [CommRing Λ] [CommRing A] [Algebra Λ A] [IsLocalRing A] {B : Type u_3} [CommRing B] [Algebra Λ B] [IsLocalRing B] (f : A →ₐ[Λ] B) [IsLocalHom f] (x : (IsLocalRing.maximalIdeal A)) :
((maximalIdeal_map f) x) = f x
theorem Deformation.comap_maximalIdeal_pow {Λ : Type u_1} {A : Type u_2} [CommRing Λ] [CommRing A] [Algebra Λ A] [IsLocalRing A] {B : Type u_3} [CommRing B] [Algebra Λ B] [IsLocalRing B] (f : A →ₐ[Λ] B) [IsLocalHom f] (n : ) :

If f is a local homomorphism, then f (𝔪 X ^ n) ≤ 𝔪 Y ^ n.

theorem Deformation.maxideal_pow_le_ker_of_artinian {Λ : Type u_1} {A : Type u_2} [CommRing Λ] [CommRing A] [Algebra Λ A] [IsLocalRing A] {B : Type u_3} [CommRing B] [Algebra Λ B] [IsLocalRing B] (f : A →ₐ[Λ] B) [IsLocalHom f] [IsArtinianRing B] :

if needed n is such that (maximalIdeal B ^ n = 0)

def Deformation.relIsoQuotient {R : Type u_1} [Ring R] (I : Ideal R) [I.IsTwoSided] :
Ideal (R I) ≃o { J : Ideal R // I J }
Equations
  • One or more equations did not get rendered due to their size.
Instances For