class
IsResidueAlgebra
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
:
IsResidueAlgebra 𝓞
indicates that A
[Algebra 𝓞 A]
has the same residue field as 𝓞
.
It is sufficient for the natural map 𝓞 to 𝓴 A to be surjective. The actual ≃+*
between residue
fields is given in IsResidueAlgebra.ringEquiv
.
- isSurjective' : Function.Surjective ⇑(algebraMap 𝓞 (IsLocalRing.ResidueField A))
Instances
theorem
IsResidueAlgebra.isSurjective
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
:
theorem
IsResidueAlgebra.algebraMap_surjective
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
:
instance
IsResidueAlgebra.instIsLocalHomRingHomAlgebraMapOfIsLocalRing
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
:
IsLocalHom (algebraMap 𝓞 A)
theorem
IsResidueAlgebra.surjective
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
:
theorem
IsResidueAlgebra.algebraMap_bijective
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
:
noncomputable def
IsResidueAlgebra.ringEquiv
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
:
Ring equivalence between the residue field of 𝓞
and A
, when [IsResidueAlgebra 𝓞 A]
Equations
Instances For
noncomputable def
IsResidueAlgebra.algEquiv
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
:
Equations
- IsResidueAlgebra.algEquiv 𝓞 A = { toEquiv := (IsResidueAlgebra.ringEquiv 𝓞 A).toEquiv, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
theorem
IsResidueAlgebra.of_localHom
{𝓞 : Type u_1}
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
{B : Type u_3}
[CommRing B]
[Algebra 𝓞 B]
[IsLocalRing B]
(f : B →ₐ[𝓞] A)
[IsLocalHom f]
[IsResidueAlgebra 𝓞 A]
:
IsResidueAlgebra 𝓞 B
theorem
IsResidueAlgebra.Ideal.neq_top_of_nontrivial_quotient
{A : Type u_2}
[CommRing A]
(I : Ideal A)
[nontrivial : Nontrivial (A ⧸ I)]
:
theorem
IsResidueAlgebra.residue_of_quot_surjective
{A : Type u_2}
[CommRing A]
[IsLocalRing A]
(I : Ideal A)
[Nontrivial (A ⧸ I)]
:
instance
IsResidueAlgebra.quotient
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
(I : Ideal A)
[Nontrivial (A ⧸ I)]
:
IsResidueAlgebra 𝓞 (A ⧸ I)
instance
IsResidueAlgebra.instResidueField
(𝓞 : Type u_1)
[CommRing 𝓞]
(A : Type u_2)
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
:
theorem
IsResidueAlgebra.of_restrictScalars
{𝓞 : Type u_1}
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
{B : Type u_4}
[CommRing B]
[Algebra 𝓞 B]
[IsLocalRing B]
[IsResidueAlgebra 𝓞 B]
[Algebra A B]
[isScalarTower : IsScalarTower 𝓞 A B]
[isLocalHom : IsLocalHom (algebraMap A B)]
:
IsResidueAlgebra A B
theorem
IsResidueAlgebra.exists_sub_mem_maximalIdeal
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
(r : A)
:
∃ (a : 𝓞), r - (algebraMap 𝓞 A) a ∈ IsLocalRing.maximalIdeal A
noncomputable def
IsResidueAlgebra.preimage
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
(r : A)
:
𝓞
For an r : A
, this is an arbitrary choice of x : 𝓞
such that r ≡ x (mod 𝔪_A)
.
Equations
- IsResidueAlgebra.preimage 𝓞 r = ⋯.choose
Instances For
theorem
IsResidueAlgebra.preimage_spec
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
(r : A)
:
theorem
IsResidueAlgebra.residue_preimage
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
(r : A)
:
theorem
IsResidueAlgebra.residue_preimage_eq_iff
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
[IsLocalHom (algebraMap 𝓞 A)]
{r : A}
{a : IsLocalRing.ResidueField 𝓞}
:
(IsLocalRing.residue 𝓞) (preimage 𝓞 r) = a ↔ (IsLocalRing.residue A) r = (IsLocalRing.ResidueField.map (algebraMap 𝓞 A)) a
theorem
IsResidueAlgebra.residue_preimage_map
(𝓞 : Type u_1)
[CommRing 𝓞]
{A : Type u_2}
[CommRing A]
[Algebra 𝓞 A]
[IsLocalRing A]
[IsResidueAlgebra 𝓞 A]
[IsLocalRing 𝓞]
[IsLocalHom (algebraMap 𝓞 A)]
{B : Type u_3}
[CommRing B]
[Algebra 𝓞 B]
[IsLocalRing B]
[IsResidueAlgebra 𝓞 B]
(f : A →ₐ[𝓞] B)
[IsLocalHom f]
(x : A)
: