Documentation

Schlessinger.IsResidueAlgebra

class IsResidueAlgebra (𝓞 : Type u_1) [CommRing 𝓞] (A : Type u_2) [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] :

IsResidueAlgebra 𝓞 indicates that A [Algebra 𝓞 A] has the same residue field as 𝓞. It is sufficient for the natural map 𝓞 to 𝓴 A to be surjective. The actual ≃+* between residue fields is given in IsResidueAlgebra.ringEquiv.

Instances
    instance IsResidueAlgebra.inst (𝓞 : Type u_1) [CommRing 𝓞] [IsLocalRing 𝓞] :
    noncomputable def IsResidueAlgebra.ringEquiv (𝓞 : Type u_1) [CommRing 𝓞] (A : Type u_2) [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] [IsLocalRing 𝓞] :

    Ring equivalence between the residue field of 𝓞 and A, when [IsResidueAlgebra 𝓞 A]

    Equations
    Instances For
      noncomputable def IsResidueAlgebra.algEquiv (𝓞 : Type u_1) [CommRing 𝓞] (A : Type u_2) [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] [IsLocalRing 𝓞] :
      Equations
      Instances For
        theorem IsResidueAlgebra.of_localHom {𝓞 : Type u_1} [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] {B : Type u_3} [CommRing B] [Algebra 𝓞 B] [IsLocalRing B] (f : B →ₐ[𝓞] A) [IsLocalHom f] [IsResidueAlgebra 𝓞 A] :
        instance IsResidueAlgebra.quotient (𝓞 : Type u_1) [CommRing 𝓞] (A : Type u_2) [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] (I : Ideal A) [Nontrivial (A I)] :
        theorem IsResidueAlgebra.of_restrictScalars {𝓞 : Type u_1} [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] {B : Type u_4} [CommRing B] [Algebra 𝓞 B] [IsLocalRing B] [IsResidueAlgebra 𝓞 B] [Algebra A B] [isScalarTower : IsScalarTower 𝓞 A B] [isLocalHom : IsLocalHom (algebraMap A B)] :
        theorem IsResidueAlgebra.exists_sub_mem_maximalIdeal (𝓞 : Type u_1) [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] (r : A) :
        ∃ (a : 𝓞), r - (algebraMap 𝓞 A) a IsLocalRing.maximalIdeal A
        noncomputable def IsResidueAlgebra.preimage (𝓞 : Type u_1) [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] (r : A) :
        𝓞

        For an r : A, this is an arbitrary choice of x : 𝓞 such that r ≡ x (mod 𝔪_A).

        Equations
        Instances For
          theorem IsResidueAlgebra.preimage_spec (𝓞 : Type u_1) [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] (r : A) :
          theorem IsResidueAlgebra.residue_preimage (𝓞 : Type u_1) [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] (r : A) :
          theorem IsResidueAlgebra.residue_preimage_map (𝓞 : Type u_1) [CommRing 𝓞] {A : Type u_2} [CommRing A] [Algebra 𝓞 A] [IsLocalRing A] [IsResidueAlgebra 𝓞 A] [IsLocalRing 𝓞] [IsLocalHom (algebraMap 𝓞 A)] {B : Type u_3} [CommRing B] [Algebra 𝓞 B] [IsLocalRing B] [IsResidueAlgebra 𝓞 B] (f : A →ₐ[𝓞] B) [IsLocalHom f] (x : A) :
          (IsLocalRing.residue 𝓞) (preimage 𝓞 x) = (IsLocalRing.residue 𝓞) (preimage 𝓞 (f x))