Documentation

Schlessinger.Lemmas.SmallExtensions

class IsSmallExtension {Λ : Type u} [CommRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) :

A small extension is a (surjective) morphism p : B ⟶ A in ArtinResAlg Λ such that its kernel I is a principal non-zero ideal with maximalIdeal B * I = 0

Instances

    A morphism is a small extension if and only if its kernel is a minimal nonzero ideal.

    A morphism in ArtinResAlg Λ is a small extension if and only if its kernel has length 1 over Λ.

    A surjective morphism is a small extension if and only if it reduces length by 1.

    theorem IsSmallExtension.hom_induction {Λ : Type u} [CommRing Λ] {A B : Deformation.ArtinResAlg Λ} [IsLocalRing Λ] {C : {A₁ A₂ : Deformation.ArtinResAlg Λ} → (A₁ A₂) → Prop} (p : B A) (h : Function.Surjective p.hom) (h0 : ∀ {A₁ A₂ : Deformation.ArtinResAlg Λ} (q : A₁ A₂), CategoryTheory.IsIso qC q) (ih : ∀ {A₁ A₂ A₃ : Deformation.ArtinResAlg Λ} (q₁ : A₁ A₂) (q₂ : A₂ A₃), Function.Surjective q₁.homIsSmallExtension q₁Function.Surjective q₂.homC q₂C (CategoryTheory.CategoryStruct.comp q₁ q₂)) :
    C p

    If a property is true for isomorphisms and stable by composing on the (categorical) left by small extensions, then it is true for any surjective morphism.

    theorem IsSmallExtension.obj_induction {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {C : Deformation.ArtinResAlg ΛProp} (X : Deformation.ArtinResAlg Λ) (hk : C Deformation.ArtinResAlg.residueField) (hiso : ∀ {A B : Deformation.ArtinResAlg Λ} (x : A B), C BC A) (ih : ∀ {A B : Deformation.ArtinResAlg Λ} (p : A B), IsSmallExtension pC BC A) :
    C X

    induction principle on objects using small extension