A small extension is a (surjective) morphism p : B ⟶ A
in ArtinResAlg Λ
such that
its kernel I
is a principal non-zero ideal with maximalIdeal B * I = 0
- principal : Submodule.IsPrincipal (RingHom.ker p.hom)
Instances
theorem
IsSmallExtension.lem
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
:
IsSmallExtension p → IsAtom (RingHom.ker p.hom)
theorem
IsSmallExtension.lem'
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
:
IsAtom (RingHom.ker p.hom) → IsSmallExtension p
theorem
IsSmallExtension.isSmallExtension_iff
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
:
A morphism is a small extension if and only if its kernel is a minimal nonzero ideal.
theorem
IsSmallExtension.isSmallExtension_iff_length_ker
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsLocalRing Λ]
:
A morphism in ArtinResAlg Λ
is a small extension if and only if
its kernel has length 1
over Λ
.
theorem
IsSmallExtension.isSmallExtension_iff_length
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsLocalRing Λ]
(h : Function.Surjective ⇑p.hom)
:
A surjective morphism is a small extension if and only if it reduces length by 1
.
theorem
IsSmallExtension.hom_induction
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
[IsLocalRing Λ]
{C : {A₁ A₂ : Deformation.ArtinResAlg Λ} → (A₁ ⟶ A₂) → Prop}
(p : B ⟶ A)
(h : Function.Surjective ⇑p.hom)
(h0 : ∀ {A₁ A₂ : Deformation.ArtinResAlg Λ} (q : A₁ ⟶ A₂), CategoryTheory.IsIso q → C q)
(ih :
∀ {A₁ A₂ A₃ : Deformation.ArtinResAlg Λ} (q₁ : A₁ ⟶ A₂) (q₂ : A₂ ⟶ A₃),
Function.Surjective ⇑q₁.hom →
IsSmallExtension q₁ → Function.Surjective ⇑q₂.hom → C q₂ → C (CategoryTheory.CategoryStruct.comp q₁ q₂))
:
C p
If a property is true for isomorphisms and stable by composing on the (categorical) left by small extensions, then it is true for any surjective morphism.
theorem
IsSmallExtension.obj_induction
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{C : Deformation.ArtinResAlg Λ → Prop}
(X : Deformation.ArtinResAlg Λ)
(hk : C Deformation.ArtinResAlg.residueField)
(hiso : ∀ {A B : Deformation.ArtinResAlg Λ} (x : A ≅ B), C B → C A)
(ih : ∀ {A B : Deformation.ArtinResAlg Λ} (p : A ⟶ B), IsSmallExtension p → C B → C A)
:
C X
induction principle on objects using small extension
theorem
IsSmallExtension.istorsion
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Module.IsTorsionBySet ↑B ↥(RingHom.ker p.hom) ↑(IsLocalRing.maximalIdeal ↑B)
theorem
IsSmallExtension.istorsion'
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
[IsLocalRing Λ]
:
Module.IsTorsionBySet Λ ↥(RingHom.ker p.hom) ↑(IsLocalRing.maximalIdeal Λ)