Documentation

Schlessinger.Categories.ArtinResAlg

Class of Artinian local Λ-algebras having same residue field as Λ.

class Deformation.IsArtinResAlg (Λ : Type u) [CommRing Λ] (X : Type u) [CommRing X] [Algebra Λ X] extends IsLocalRing X, IsWellFounded (Submodule X X) fun (x1 x2 : Submodule X X) => x1 < x2, IsResidueAlgebra Λ X, IsLocalHom (algebraMap Λ X) :
Instances
    structure Deformation.ArtinResAlg (Λ : Type u) [CommRing Λ] :
    Type (u + 1)

    The category of local Artinian algebras over Λ having same residue field as Λ.

    Instances For
      @[reducible, inline]

      Make a ArtinResAlg from an unbundled algebra.

      Equations
      Instances For
        theorem Deformation.ArtinResAlg.coe_of (Λ : Type u) [CommRing Λ] (X : Type u) [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsArtinianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] :
        (of Λ X) = X
        structure Deformation.ArtinResAlg.Hom {Λ : Type u} [CommRing Λ] (A B : ArtinResAlg Λ) :

        The type of morphisms in ArtinResAlg Λ.

        • hom : A →ₐ[Λ] B

          The underlying algebra map.

        Instances For
          theorem Deformation.ArtinResAlg.Hom.ext {Λ : Type u} {inst✝ : CommRing Λ} {A B : ArtinResAlg Λ} {x y : A.Hom B} (hom : x.hom = y.hom) :
          x = y
          theorem Deformation.ArtinResAlg.Hom.ext_iff {Λ : Type u} {inst✝ : CommRing Λ} {A B : ArtinResAlg Λ} {x y : A.Hom B} :
          x = y x.hom = y.hom
          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Deformation.ArtinResAlg.ofHom {Λ : Type u} [CommRing Λ] {A B : Type u} [CommRing A] [Algebra Λ A] [IsLocalRing A] [IsArtinianRing A] [IsResidueAlgebra Λ A] [IsLocalHom (algebraMap Λ A)] [CommRing B] [Algebra Λ B] [IsLocalRing B] [IsArtinianRing B] [IsResidueAlgebra Λ B] [IsLocalHom (algebraMap Λ B)] (f : A →ₐ[Λ] B) :
          of Λ A of Λ B

          Typecheck an AlgHom as a morphism in ArtinResAlg.

          Equations
          Instances For
            @[simp]
            theorem Deformation.ArtinResAlg.hom_comp {Λ : Type u} [CommRing Λ] {A B C : ArtinResAlg Λ} (f : A B) (g : B C) :
            theorem Deformation.ArtinResAlg.comp_apply {Λ : Type u} [CommRing Λ] {A B C : ArtinResAlg Λ} (f : A B) (g : B C) (x : A) :
            theorem Deformation.ArtinResAlg.hom_ext {Λ : Type u} [CommRing Λ] {A B : ArtinResAlg Λ} {f g : A B} (hf : f.hom = g.hom) :
            f = g
            theorem Deformation.ArtinResAlg.hom_ext_iff {Λ : Type u} [CommRing Λ] {A B : ArtinResAlg Λ} {f g : A B} :
            f = g f.hom = g.hom
            @[simp]
            theorem Deformation.ArtinResAlg.ofHom_hom {Λ : Type u} [CommRing Λ] {A B : ArtinResAlg Λ} (f : A B) :
            ofHom f.hom = f

            Build an isomorphism in the category ArtinResAlg R from a ContinuousAlgEquiv between Algebras.

            Equations
            Instances For
              def CategoryTheory.Iso.ArtintoAlgEquiv {Λ : Type u} [CommRing Λ] {A B : Deformation.ArtinResAlg Λ} (i : A B) :
              A ≃ₐ[Λ] B

              Build a ContinuousAlgEquiv from an isomorphism in the category ArtinResAlg R.

              Equations
              Instances For

                The residue field 𝕜 as a proartinian local algebra.

                Equations
                Instances For

                  The quotient map of a ArtinResAlg to the residue field.

                  Equations
                  Instances For
                    Equations

                    A bijective morphism defines an isomorphism.

                    @[simp]