Class of Artinian local Λ
-algebras having same residue field as Λ
.
class
Deformation.IsArtinResAlg
(Λ : Type u)
[CommRing Λ]
(X : Type u)
[CommRing X]
[Algebra Λ X]
extends IsLocalRing X, IsWellFounded (Submodule X X) fun (x1 x2 : Submodule X X) => x1 < x2, IsResidueAlgebra Λ X, IsLocalHom (algebraMap Λ X) :
- exists_pair_ne : ∃ (x : X) (y : X), x ≠ y
- wf : WellFounded fun (x1 x2 : Submodule X X) => x1 < x2
Instances
The category of local Artinian algebras over Λ
having same residue field as Λ
.
- carrier : Type u
Underlying set of a
ArtinResAlg
- commRing : CommRing ↑self
The commutative ring structure of a
ArtinResAlg
- algebra : Algebra Λ ↑self
The algebra structure of a
ArtinResAlg
- isArtinResAlg : IsArtinResAlg Λ ↑self
local + Artinian + ResidueAlgebra + LocalHom
Instances For
instance
Deformation.ArtinResAlg.instCoeSortType
(Λ : Type u)
[CommRing Λ]
:
CoeSort (ArtinResAlg Λ) (Type u)
Equations
@[reducible, inline]
abbrev
Deformation.ArtinResAlg.of
(Λ : Type u)
[CommRing Λ]
(X : Type u)
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
:
Make a ArtinResAlg
from an unbundled algebra.
Equations
- Deformation.ArtinResAlg.of Λ X = { carrier := X, commRing := inst✝⁵, algebra := inst✝⁴, isArtinResAlg := ⋯ }
Instances For
theorem
Deformation.ArtinResAlg.coe_of
(Λ : Type u)
[CommRing Λ]
(X : Type u)
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
:
theorem
Deformation.ArtinResAlg.Hom.ext
{Λ : Type u}
{inst✝ : CommRing Λ}
{A B : ArtinResAlg Λ}
{x y : A.Hom B}
(hom : x.hom = y.hom)
:
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev
Deformation.ArtinResAlg.ofHom
{Λ : Type u}
[CommRing Λ]
{A B : Type u}
[CommRing A]
[Algebra Λ A]
[IsLocalRing A]
[IsArtinianRing A]
[IsResidueAlgebra Λ A]
[IsLocalHom (algebraMap Λ A)]
[CommRing B]
[Algebra Λ B]
[IsLocalRing B]
[IsArtinianRing B]
[IsResidueAlgebra Λ B]
[IsLocalHom (algebraMap Λ B)]
(f : A →ₐ[Λ] B)
:
Typecheck an AlgHom
as a morphism in ArtinResAlg
.
Equations
- Deformation.ArtinResAlg.ofHom f = { hom := f }
Instances For
@[simp]
@[simp]
theorem
Deformation.ArtinResAlg.hom_comp
{Λ : Type u}
[CommRing Λ]
{A B C : ArtinResAlg Λ}
(f : A ⟶ B)
(g : B ⟶ C)
:
theorem
Deformation.ArtinResAlg.comp_apply
{Λ : Type u}
[CommRing Λ]
{A B C : ArtinResAlg Λ}
(f : A ⟶ B)
(g : B ⟶ C)
(x : ↑A)
:
theorem
Deformation.ArtinResAlg.hom_ext
{Λ : Type u}
[CommRing Λ]
{A B : ArtinResAlg Λ}
{f g : A ⟶ B}
(hf : f.hom = g.hom)
:
theorem
Deformation.ArtinResAlg.hom_ofHom
{Λ : Type u}
[CommRing Λ]
{X Y : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(f : X →ₐ[Λ] Y)
:
@[simp]
theorem
Deformation.ArtinResAlg.ofHom_hom
{Λ : Type u}
[CommRing Λ]
{A B : ArtinResAlg Λ}
(f : A ⟶ B)
:
@[simp]
theorem
Deformation.ArtinResAlg.ofHom_id
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
:
@[simp]
theorem
Deformation.ArtinResAlg.ofHom_comp
{Λ : Type u}
[CommRing Λ]
{X Y Z : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
[CommRing Z]
[Algebra Λ Z]
[IsLocalRing Z]
[IsArtinianRing Z]
[IsResidueAlgebra Λ Z]
[IsLocalHom (algebraMap Λ Z)]
(f : X →ₐ[Λ] Y)
(g : Y →ₐ[Λ] Z)
:
def
Deformation.ArtinResAlg.ofEquiv
{Λ : Type u}
[CommRing Λ]
{X Y : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(e : X ≃ₐ[Λ] Y)
:
Build an isomorphism in the category ArtinResAlg R
from a
ContinuousAlgEquiv
between Algebra
s.
Equations
- Deformation.ArtinResAlg.ofEquiv e = { hom := Deformation.ArtinResAlg.ofHom ↑e, inv := Deformation.ArtinResAlg.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
Deformation.ArtinResAlg.ofEquiv_inv_hom
{Λ : Type u}
[CommRing Λ]
{X Y : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(e : X ≃ₐ[Λ] Y)
:
@[simp]
theorem
Deformation.ArtinResAlg.ofEquiv_hom_hom
{Λ : Type u}
[CommRing Λ]
{X Y : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(e : X ≃ₐ[Λ] Y)
:
def
CategoryTheory.Iso.ArtintoAlgEquiv
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(i : A ≅ B)
:
Build a ContinuousAlgEquiv
from an isomorphism in the category ArtinResAlg R
.
Equations
Instances For
The residue field 𝕜
as a proartinian local algebra.
Equations
Instances For
noncomputable instance
Deformation.ArtinResAlg.instFieldCarrierResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
:
noncomputable def
Deformation.ArtinResAlg.toResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(R : ArtinResAlg Λ)
:
The quotient map of a ArtinResAlg
to the residue field.
Equations
- R.toResidueField = { hom := (↑(IsResidueAlgebra.algEquiv Λ ↑R).symm).comp (IsScalarTower.toAlgHom Λ (↑R) (IsLocalRing.ResidueField ↑R)) }
Instances For
theorem
Deformation.ArtinResAlg.toResidueField_surjective
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(R : ArtinResAlg Λ)
:
theorem
Deformation.ArtinResAlg.ker_toResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(R : ArtinResAlg Λ)
:
theorem
Deformation.ArtinResAlg.to_residueField_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{R : ArtinResAlg Λ}
(f : R ⟶ residueField)
(r : ↑R)
:
noncomputable instance
Deformation.ArtinResAlg.instUniqueHomResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(R : ArtinResAlg Λ)
:
Unique (R ⟶ residueField)
Equations
- R.instUniqueHomResidueField = { default := R.toResidueField, uniq := ⋯ }
noncomputable def
Deformation.ArtinResAlg.isTerminalResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
:
𝕜
is terminal in ArtinResAlg
.
Equations
Instances For
A bijective morphism defines an isomorphism.
noncomputable def
Deformation.ArtinResAlg.iso_of_bijective
{Λ : Type u}
[CommRing Λ]
{X Y : ArtinResAlg Λ}
(f : X ⟶ Y)
(h : Function.Bijective ⇑f.hom)
:
Equations
Instances For
@[simp]
theorem
Deformation.ArtinResAlg.iso_of_bijective_hom
{Λ : Type u}
[CommRing Λ]
{X Y : ArtinResAlg Λ}
(f : X ⟶ Y)
(h : Function.Bijective ⇑f.hom)
:
theorem
Deformation.ArtinResAlg.isIso_of_bijective
{Λ : Type u}
[CommRing Λ]
{X Y : ArtinResAlg Λ}
(f : X ⟶ Y)
(h : Function.Bijective ⇑f.hom)
:
theorem
Deformation.ArtinResAlg.isIso_iff_bijective
{Λ : Type u}
[CommRing Λ]
{X Y : ArtinResAlg Λ}
(f : X ⟶ Y)
:
theorem
Deformation.ArtinResAlg.isArtinianNoethrianModule
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalRing Λ]
:
instance
Deformation.ArtinResAlg.instIsArtinianOfIsLocalRing
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalRing Λ]
:
IsArtinian Λ X
instance
Deformation.ArtinResAlg.instIsNoetherianOfIsLocalRing
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalRing Λ]
:
IsNoetherian Λ X