instance
IsLocalRing.quot
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
:
IsLocalRing (R ⧸ I)
instance
IsLocalHom.quotient_mk
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
:
instance
IsLocalHom.quotient_mkₐ
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
[CommRing S]
[Algebra S R]
:
IsLocalHom (Ideal.Quotient.mkₐ S I)
theorem
IsLocalRing.maximalIdeal_comap_mk
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
:
theorem
IsLocalRing.maximalIdeal_comap_mkₐ
{R : Type u_1}
(S : Type u_2)
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
[CommRing S]
[Algebra S R]
:
instance
IsLocalHom.algebraMap_quotient
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Nontrivial (R ⧸ I)]
{Λ : Type u_3}
[CommRing Λ]
[Algebra Λ R]
[IsLocalHom (algebraMap Λ R)]
:
IsLocalHom (algebraMap Λ (R ⧸ I))
instance
IsLocalHom.lift
{R : Type u_1}
[CommRing R]
(I : Ideal R)
{S : Type u_4}
[I.IsTwoSided]
[Semiring S]
(f : R →+* S)
[h : IsLocalHom f]
(H : ∀ a ∈ I, f a = 0)
:
IsLocalHom (Ideal.Quotient.lift I f H)