Documentation

Schlessinger.RelativeCotangentSpace.Defs

@[reducible, inline]
abbrev denom_ideal (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] (X : Type u_2) [CommRing X] [Algebra Λ X] [IsLocalRing X] :
Equations
Instances For
    @[reducible, inline]
    abbrev denom (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] (X : Type u_2) [CommRing X] [Algebra Λ X] [IsLocalRing X] :
    Equations
    Instances For
      @[reducible, inline]
      abbrev relativeCotangentSpace (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] (X : Type u_2) [CommRing X] [Algebra Λ X] [IsLocalRing X] :
      Type u_2
      Equations
      Instances For
        theorem denom_map1' {Λ : Type u_1} [CommRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] :
        theorem denom_map2 {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] (f : X →ₐ[Λ] Y) :
        theorem denom_map {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] :
        @[simp]
        @[simp]
        theorem relativeCotangentSpace.map_aux'_comp {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] {Z : Type u_4} [CommRing Z] [Algebra Λ Z] [IsLocalRing Z] (g : Y →ₐ[Λ] Z) [IsLocalHom g] :
        Equations
        Instances For
          @[simp]
          theorem map_relCotan_apply {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] (x : (IsLocalRing.maximalIdeal X)) :
          @[simp]
          theorem map_relCotan_comp {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] {Z : Type u_4} [CommRing Z] [Algebra Λ Z] [IsLocalRing Z] (g : Y →ₐ[Λ] Z) [IsLocalHom g] :
          theorem commutativediag {Λ : Type u_1} [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] {Y : Type u_3} [CommRing Y] [Algebra Λ Y] [IsLocalRing Y] (f : X →ₐ[Λ] Y) [IsLocalHom f] :