ArtinResAlg
has pullbacks #
The subalgebra of X × Y
defining the pullback of f
and g
.
The first projection from the pullback as an AlgHom
.
def
pullbackSubalgebra_fst
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
:
Equations
- pullbackSubalgebra_fst f g = (AlgHom.fst Λ X Y).comp (pullbackSubalgebra f g).val
Instances For
@[simp]
The second projection from the pullback as an AlgHom
.
def
pullbackSubalgebra_snd
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
:
Equations
- pullbackSubalgebra_snd f g = (AlgHom.snd Λ X Y).comp (pullbackSubalgebra f g).val
Instances For
@[simp]
instance
instIsLocalRingSubtypeProdMemSubalgebraPullbackSubalgebra
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
[IsLocalHom f]
[IsLocalHom g]
[IsLocalRing X]
[IsLocalRing Y]
[IsLocalRing Z]
:
IsLocalRing ↥(pullbackSubalgebra f g)
instance
instIsLocalHomSubtypeProdMemSubalgebraPullbackSubalgebraRingHomAlgebraMap
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
[IsLocalHom f]
[IsLocalHom g]
[IsLocalHom (algebraMap Λ X)]
:
IsLocalHom (algebraMap Λ ↥(pullbackSubalgebra f g))
instance
instIsResidueAlgebraSubtypeProdMemSubalgebraPullbackSubalgebra
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
[IsLocalHom f]
[IsLocalHom g]
[IsLocalRing X]
[IsResidueAlgebra Λ X]
[IsLocalRing Y]
[IsLocalRing Z]
:
IsResidueAlgebra Λ ↥(pullbackSubalgebra f g)
instance
instIsArtinianPullback
{Λ : Type u}
[CommRing Λ]
{X : Type u}
[CommRing X]
[Algebra Λ X]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
{Z : Type u}
[CommRing Z]
[Algebra Λ Z]
(f : X →ₐ[Λ] Z)
(g : Y →ₐ[Λ] Z)
[IsLocalRing X]
[IsArtinianRing X]
[IsResidueAlgebra Λ X]
[IsLocalRing Y]
[IsArtinianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalRing Λ]
:
IsArtinianRing ↥(pullbackSubalgebra f g)
The pullback object in ArtinResAlg Λ
def
pullbackinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
- pullbackinC f g = Deformation.ArtinResAlg.of Λ ↥(pullbackSubalgebra f.hom g.hom)
Instances For
The first projection of the pullback in ArtinResAlg Λ
def
fstinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
Instances For
@[simp]
theorem
fstinC_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
(x : ↑(pullbackinC f g))
:
The second projection of the pullback in ArtinResAlg Λ
def
sndinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
Instances For
@[simp]
theorem
sndinC_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
(x : ↑(pullbackinC f g))
:
The PullbackCone
defining the pullback.
def
pullbackConeinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
- pullbackConeinC f g = CategoryTheory.Limits.PullbackCone.mk (fstinC f g) (sndinC f g) ⋯
Instances For
The lift of a PullbackCone
over f
and g
as an AlgHom
.
def
lift_alghom
{Λ : Type u}
[CommRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
:
Equations
- lift_alghom s = (s.fst.hom.prod s.snd.hom).codRestrict (pullbackSubalgebra f.hom g.hom) ⋯
Instances For
@[simp]
theorem
lift_alghom_apply_coe
{Λ : Type u}
[CommRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
(n : ↑s.pt)
:
@[simp]
theorem
fstinC_lift_alghom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
(x : ↑s.pt)
:
@[simp]
theorem
sndinC_lift_alghom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
(x : ↑s.pt)
:
The lift of a PullbackCone
over f
and g
as an morphism.
def
pullbackinC_lift
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
:
Equations
Instances For
pullbackConeinC f g
is a limit
def
isLimit_pullbackConeinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
Instances For
@[simp]
theorem
pullbackConeinC_lift
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
:
@[simp]
theorem
pullbackConeinC_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
:
@[simp]
theorem
pullbackConeinC_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
:
@[simp]
theorem
pullbackinC_lift_fstinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
:
@[simp]
theorem
pullbackinC_lift_fstinC_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
(x : ↑s.pt)
:
@[simp]
theorem
pullbackinC_lift_sndinC
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
:
@[simp]
theorem
pullbackinC_lift_sndinC_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
{f : X ⟶ Z}
{g : Y ⟶ Z}
(s : CategoryTheory.Limits.PullbackCone f g)
(x : ↑s.pt)
:
instance
instHasPullbackArtinResAlg
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
The arbitrary pullback given by pullback
is isomorphic to pullbackinC
noncomputable def
pullbackiso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
Instances For
@[simp]
theorem
pullbackiso_hom_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
@[simp]
theorem
pullbackiso_hom_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
@[simp]
theorem
pullbackiso_inv_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
@[simp]
theorem
pullbackiso_inv_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
: