Documentation

Schlessinger.Categories.HasPullbacks

ArtinResAlg has pullbacks #

The subalgebra of X × Y defining the pullback of f and g.

def pullbackSubalgebra {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) :
Subalgebra Λ (X × Y)
Equations
  • pullbackSubalgebra f g = { carrier := {(x, y) : X × Y | f x = g y}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := }
Instances For
    @[simp]
    theorem coe_pullbackSubalgebra {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) :
    (pullbackSubalgebra f g) = {(x, y) : X × Y | f x = g y}
    @[simp]
    theorem mem_pullbackSubalgebra {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) (x : X × Y) :
    x pullbackSubalgebra f g f x.1 = g x.2
    theorem pullbackprop {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] {f : X →ₐ[Λ] Z} {g : Y →ₐ[Λ] Z} (x : (pullbackSubalgebra f g)) :
    f (↑x).1 = g (↑x).2

    The first projection from the pullback as an AlgHom.

    def pullbackSubalgebra_fst {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) :
    Equations
    Instances For
      @[simp]
      theorem pullbackSubalgebra_fst_apply {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) (a✝ : (pullbackSubalgebra f g)) :
      (pullbackSubalgebra_fst f g) a✝ = (↑a✝).1

      The second projection from the pullback as an AlgHom.

      def pullbackSubalgebra_snd {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) :
      Equations
      Instances For
        @[simp]
        theorem pullbackSubalgebra_snd_apply {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) (a✝ : (pullbackSubalgebra f g)) :
        (pullbackSubalgebra_snd f g) a✝ = (↑a✝).2
        theorem isunit_iff_pullback {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalHom f] [IsLocalHom g] (x : (pullbackSubalgebra f g)) :
        IsUnit (↑x).1 IsUnit (↑x).2
        theorem isunit_iff_fst_pullback {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalHom f] [IsLocalHom g] (x : (pullbackSubalgebra f g)) :
        IsUnit x IsUnit (↑x).1
        instance instIsLocalRingSubtypeProdMemSubalgebraPullbackSubalgebra {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalHom f] [IsLocalHom g] [IsLocalRing X] [IsLocalRing Y] [IsLocalRing Z] :
        instance isLocalHom_fst {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalHom f] [IsLocalHom g] :
        instance isLocalHom_snd {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalHom f] [IsLocalHom g] :
        instance instIsArtinianPullback {Λ : Type u} [CommRing Λ] {X : Type u} [CommRing X] [Algebra Λ X] {Y : Type u} [CommRing Y] [Algebra Λ Y] {Z : Type u} [CommRing Z] [Algebra Λ Z] (f : X →ₐ[Λ] Z) (g : Y →ₐ[Λ] Z) [IsLocalRing X] [IsArtinianRing X] [IsResidueAlgebra Λ X] [IsLocalRing Y] [IsArtinianRing Y] [IsResidueAlgebra Λ Y] [IsLocalRing Λ] :

        The pullback object in ArtinResAlg Λ

        def pullbackinC {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) :
        Equations
        Instances For

          The first projection of the pullback in ArtinResAlg Λ

          def fstinC {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) :
          Equations
          Instances For
            @[simp]
            theorem fstinC_apply {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) (x : (pullbackinC f g)) :
            (fstinC f g).hom x = (↑x).1

            The second projection of the pullback in ArtinResAlg Λ

            def sndinC {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) :
            Equations
            Instances For
              @[simp]
              theorem sndinC_apply {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) (x : (pullbackinC f g)) :
              (sndinC f g).hom x = (↑x).2

              The PullbackCone defining the pullback.

              The lift of a PullbackCone over f and g as an AlgHom.

              def lift_alghom {Λ : Type u} [CommRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) :
              Equations
              Instances For
                @[simp]
                theorem lift_alghom_apply_coe {Λ : Type u} [CommRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) (n : s.pt) :
                ((lift_alghom s) n) = (s.fst.hom n, s.snd.hom n)
                @[simp]
                theorem fstinC_lift_alghom {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) (x : s.pt) :
                (fstinC f g).hom ((lift_alghom s) x) = s.fst.hom x
                @[simp]
                theorem sndinC_lift_alghom {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) (x : s.pt) :
                (sndinC f g).hom ((lift_alghom s) x) = s.snd.hom x

                The lift of a PullbackCone over f and g as an morphism.

                pullbackConeinC f g is a limit

                @[simp]
                theorem pullbackConeinC_fst {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} :
                @[simp]
                theorem pullbackConeinC_snd {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} :
                @[simp]
                theorem pullbackinC_lift_fstinC_apply {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) (x : s.pt) :
                (↑((pullbackinC_lift s).hom x)).1 = s.fst.hom x
                @[simp]
                theorem pullbackinC_lift_sndinC_apply {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} {f : X Z} {g : Y Z} (s : CategoryTheory.Limits.PullbackCone f g) (x : s.pt) :
                (↑((pullbackinC_lift s).hom x)).2 = s.snd.hom x

                The arbitrary pullback given by pullback is isomorphic to pullbackinC