Documentation

Schlessinger.Categories.ProArtinResAlg

Instances
    structure Deformation.ProArtinResAlg (Λ : Type u) [CommRing Λ] :
    Type (u + 1)

    The category of local proartinian algebras over Λ with fixed residue field 𝕜.

    Instances For
      @[reducible, inline]

      Make a ProArtinResAlg from an unbundled algebra.

      Equations
      Instances For
        structure Deformation.ProArtinResAlg.Hom {Λ : Type u} [CommRing Λ] (A B : ProArtinResAlg Λ) :

        The type of morphisms in ProArtinResAlg Λ.

        Instances For
          theorem Deformation.ProArtinResAlg.Hom.ext {Λ : Type u} {inst✝ : CommRing Λ} {A B : ProArtinResAlg Λ} {x y : A.Hom B} (hom : x.hom = y.hom) :
          x = y
          theorem Deformation.ProArtinResAlg.Hom.ext_iff {Λ : Type u} {inst✝ : CommRing Λ} {A B : ProArtinResAlg Λ} {x y : A.Hom B} :
          x = y x.hom = y.hom
          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]

          Typecheck an local AlgHom as a morphism in ProArtinResAlg.

          Equations
          Instances For
            @[simp]
            theorem Deformation.ProArtinResAlg.hom_comp {Λ : Type u} [CommRing Λ] {A B C : ProArtinResAlg Λ} (f : A B) (g : B C) :
            theorem Deformation.ProArtinResAlg.comp_apply {Λ : Type u} [CommRing Λ] {A B C : ProArtinResAlg Λ} (f : A B) (g : B C) (x : A) :
            theorem Deformation.ProArtinResAlg.hom_ext {Λ : Type u} [CommRing Λ] {A B : ProArtinResAlg Λ} {f g : A B} (hf : f.hom = g.hom) :
            f = g
            theorem Deformation.ProArtinResAlg.hom_ext_iff {Λ : Type u} [CommRing Λ] {A B : ProArtinResAlg Λ} {f g : A B} :
            f = g f.hom = g.hom
            @[simp]
            theorem Deformation.ProArtinResAlg.ofHom_hom {Λ : Type u} [CommRing Λ] {A B : ProArtinResAlg Λ} (f : A B) :
            ofHom f.hom = f

            Build an isomorphism in the category ProArtinResAlg R from a ContinuousAlgEquiv between Algebras.

            Equations
            Instances For

              Build a AlgEquiv from an isomorphism in the category ProArtinResAlg R.

              Equations
              Instances For

                The residue field 𝕜 as a proartinian local algebra.

                Equations
                Instances For

                  The quotient map of a ProArtinResAlg to the residue field.

                  Equations
                  Instances For
                    theorem Deformation.inclusion (Λ : Type u) [CommRing Λ] (X : Type u) [CommRing X] [Algebra Λ X] :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem Deformation.inclusionFunctor_map_hom {Λ : Type u} [CommRing Λ] {X✝ Y✝ : ArtinResAlg Λ} (f : X✝ Y✝) :