Documentation

Schlessinger.Defs.IsSmooth

@[reducible, inline]
noncomputable abbrev smooth_def_maps {Λ : Type u} [CommRing Λ] {F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} (η : F G) {A B : Deformation.ArtinResAlg Λ} (f : B A) :

The maps involved in the definition of smooth natural transformation.

Equations
Instances For
    def IsSmooth {Λ : Type u} [CommRing Λ] {F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} (η : F G) :

    a natural transformation F ⟹ G is smooth if for any surjective B ⟶ A in ArtinResidueAlg the induced morphism F B ⟶ F A ⨯_G(A) G B is surjective

    Equations
    Instances For
      theorem smooth_def_map_surj_iff {Λ : Type u} [CommRing Λ] (F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) (η : F G) {A B : Deformation.ArtinResAlg Λ} (f : B A) :
      Function.Surjective (smooth_def_maps η f) ∀ (x : F.obj A) (y : G.obj B), η.app A x = G.map f y∃ (z : F.obj B), F.map f z = x η.app B z = y

      it is enough to check the condition on small extensions