@[reducible, inline]
noncomputable abbrev
smooth_def_maps
{Λ : Type u}
[CommRing Λ]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
The maps involved in the definition of smooth natural transformation.
Equations
- smooth_def_maps η f = CategoryTheory.Limits.pullback.lift (F.map f) (η.app B) ⋯
Instances For
theorem
smooth_def_maps_fst
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
CategoryTheory.CategoryStruct.comp (smooth_def_maps η f) (CategoryTheory.Limits.pullback.fst (η.app A) (G.map f)) = F.map f
theorem
smooth_def_maps_snd
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
CategoryTheory.CategoryStruct.comp (smooth_def_maps η f) (CategoryTheory.Limits.pullback.snd (η.app A) (G.map f)) = η.app B
instance
instIsIsoObjArtinResAlgPullbackAppMapSmooth_def_mapsOfFunctorType
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
[CategoryTheory.IsIso η]
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
def
IsSmooth
{Λ : Type u}
[CommRing Λ]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : F ⟶ G)
:
a natural transformation F ⟹ G
is smooth if for any surjective B ⟶ A
in ArtinResidueAlg
the induced morphism F B ⟶ F A ⨯_G(A) G B
is surjective
Equations
- IsSmooth η = ∀ {B A : Deformation.ArtinResAlg Λ} (f : B ⟶ A), Function.Surjective ⇑f.hom → Function.Surjective (smooth_def_maps η f)
Instances For
def
pullbackObj_lift
{X Y Z : Type w}
{f : X ⟶ Z}
{g : Y ⟶ Z}
{W : Type w}
(h : W ⟶ X)
(k : W ⟶ Y)
(w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g)
:
Equations
Instances For
theorem
eq_lift_pullbackObj
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
smooth_def_maps η f = CategoryTheory.CategoryStruct.comp (pullbackObj_lift (F.map f) (η.app B) ⋯)
(CategoryTheory.Limits.Types.pullbackIsoPullback (η.app A) (G.map f)).inv
theorem
smooth_def_map_surj_iff_aux
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
Function.Surjective (smooth_def_maps η f) ↔ Function.Surjective (pullbackObj_lift (F.map f) (η.app B) ⋯)
theorem
smooth_def_map_surj_iff
{Λ : Type u}
[CommRing Λ]
(F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(η : F ⟶ G)
{A B : Deformation.ArtinResAlg Λ}
(f : B ⟶ A)
:
theorem
isSmooth_iff
{Λ : Type u}
[CommRing Λ]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : F ⟶ G)
[IsLocalRing Λ]
:
IsSmooth η ↔ ∀ {B A : Deformation.ArtinResAlg Λ} (f : B ⟶ A),
Function.Surjective ⇑f.hom → IsSmallExtension f → Function.Surjective (smooth_def_maps η f)
it is enough to check the condition on small extensions
theorem
terminal_from_eq_residue
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A : Deformation.ArtinResAlg Λ}
:
theorem
surjective_terminal_from
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A : Deformation.ArtinResAlg Λ}
:
theorem
surj_of_smooth
{Λ : Type u}
[CommRing Λ]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{η : F ⟶ G}
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) G]
(h : IsSmooth η)
(A : Deformation.ArtinResAlg Λ)
:
Function.Surjective (η.app A)