Documentation

Schlessinger.RelativeCotangentSpace.Derivations

noncomputable def decomp_1 (Λ : Type u_1) [CommRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (x : X) :
Λ
Equations
Instances For
    noncomputable def decomp_2 (Λ : Type u_1) [CommRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (x : X) :
    Equations
    Instances For
      theorem decomp_sum (Λ : Type u_1) [CommRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (x : X) :
      (algebraMap Λ X) (decomp_1 Λ x) + (decomp_2 Λ x) = x
      @[simp]
      theorem residue_decomp_1 (Λ : Type u_1) [CommRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (x : X) :
      theorem mk_decomps_eq (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (a1 a2 : Λ) (b1 b2 : (IsLocalRing.maximalIdeal X)) (h : (algebraMap Λ X) a1 + b1 = (algebraMap Λ X) a2 + b2) :
      theorem fun_of_decomp (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] {X : Type u_2} [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (f : Module.Dual (IsLocalRing.ResidueField X) (relativeCotangentSpace Λ X)) (x : X) (a : Λ) (b : (IsLocalRing.maximalIdeal X)) (h : (algebraMap Λ X) a + b = x) :
      Equations
      Instances For
        theorem deriv_max_sq_zero (Λ : Type u_1) [CommRing Λ] (X : Type u_2) [CommRing X] [Algebra Λ X] [IsLocalRing X] (f : Derivation Λ X (IsLocalRing.ResidueField X)) (x : ↥(IsLocalRing.maximalIdeal X ^ 2)) :
        f x = 0
        theorem deriv_map_zero (Λ : Type u_1) [CommRing Λ] [IsLocalRing Λ] (X : Type u_2) [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsResidueAlgebra Λ X] (f : Derivation Λ X (IsLocalRing.ResidueField X)) (x : (Ideal.map (algebraMap Λ X) (IsLocalRing.maximalIdeal Λ))) :
        f x = 0
        Equations
        Instances For
          Equations
          Instances For