Documentation

Schlessinger.Theorem.Lemmas

def seq {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) (k : ) :
Equations
Instances For
    theorem WellFoundedLT.antitone_chain_condition {α : Type u_2} [PartialOrder α] [h : WellFoundedLT α] (a : ᵒᵈ →o α) :
    ∃ (n : ᵒᵈ), mn, a n = a m
    theorem N_def {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] (k i : ) :
    (seq J hJ k) (.choose k) (seq J hJ k) i
    theorem JN_le {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) (hmJ : ∀ (n : ), IsLocalRing.maximalIdeal R ^ n J n) [IsNoetherianRing R] (k : ) :
    J (.choose k)IsLocalRing.maximalIdeal R ^ k J k
    theorem indstep {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] {k : } (x₀ : (J (.choose k))) :
    ∃ (x : (J (.choose (k + 1)))), x₀ - x IsLocalRing.maximalIdeal R ^ k
    noncomputable def seqx_aux {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] (i : ) (x : (J (.choose i))) (n : ) :
    (J (.choose (i + n)))
    Equations
    Instances For
      theorem seqx_aux_prop {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] (i : ) (x : (J (.choose i))) (n : ) :
      (seqx_aux J hJ i x n) - (seqx_aux J hJ i x (n + 1)) IsLocalRing.maximalIdeal R ^ (i + n)
      noncomputable def seqx {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] (i : ) (x : (J (.choose i))) :
      R
      Equations
      Instances For
        theorem seqx_mem {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) (hmJ : ∀ (n : ), IsLocalRing.maximalIdeal R ^ n J n) [IsNoetherianRing R] (i : ) (x : (J (.choose i))) (k : ) :
        seqx J hJ i x k J k
        theorem adiccauchy {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] (i : ) (x : (J (.choose i))) :
        theorem sametopo' {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) (hmJ : ∀ (n : ), IsLocalRing.maximalIdeal R ^ n J n) [IsNoetherianRing R] [Deformation.IsComplete R] (n : ) :
        ∃ (k : ), J k IsLocalRing.maximalIdeal R ^ niInf J

        Stacks Tag 06SE

        def J_aux {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) :
        Ideal R
        Equations
        Instances For
          theorem J_aux_anti {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) :
          theorem J_aux_hmJ {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hmJ : ∀ (n : ), IsLocalRing.maximalIdeal R ^ (n + 2) J n) (n : ) :
          @[simp]
          theorem J_aux_iInf {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) :
          @[simp]
          theorem J_le_aux_max_2 {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) (k : ) :
          J (max k 2) J_aux J k
          theorem sametopo {R : Type u_1} [CommRing R] [IsLocalRing R] (J : Ideal R) (hJ : Antitone J) [IsNoetherianRing R] [Deformation.IsComplete R] (hmJ : ∀ (n : ), IsLocalRing.maximalIdeal R ^ (n + 2) J n) (n : ) :
          ∃ (k : ), J k IsLocalRing.maximalIdeal R ^ niInf J