theorem
mem_maximalideal_pow
(Λ : Type u_1)
[CommRing Λ]
[IsLocalRing Λ]
(r k : ℕ)
(x : MvPowerSeries (Fin r) Λ)
:
x ∈ IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) ^ k ↔ ∀ (n : Fin r →₀ ℕ), (MvPowerSeries.coeff Λ n) x ∈ IsLocalRing.maximalIdeal Λ ^ (k - n.degree)
theorem
eventually_in_maxideal_pow
(Λ : Type u_1)
[CommRing Λ]
[IsLocalRing Λ]
(r : ℕ)
[TopologicalSpace Λ]
(h : ∀ (k : ℕ), (IsLocalRing.maximalIdeal Λ ^ k).carrier ∈ nhds 0)
(N : ℕ)
:
∀ᶠ (x : MvPowerSeries (Fin r) Λ) in nhds 0, x ∈ IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) ^ N
instance
instIsCompleteMvPowerSeriesFin
(Λ : Type u_1)
[CommRing Λ]
[IsLocalRing Λ]
(r : ℕ)
[Deformation.IsComplete Λ]
:
Deformation.IsComplete (MvPowerSeries (Fin r) Λ)
instance
instIsResidueAlgebraMvPowerSeriesFin
(Λ : Type u_1)
[CommRing Λ]
[IsLocalRing Λ]
(r : ℕ)
:
IsResidueAlgebra Λ (MvPowerSeries (Fin r) Λ)
instance
instIsArtinianRingQuotientIdealHPowNatMaximalIdealOfIsNoetherianRing_schlessinger
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
(k : ℕ)
:
IsArtinianRing (R ⧸ IsLocalRing.maximalIdeal R ^ k)
theorem
WellFoundedLT.antitone_chain_condition
{α : Type u_2}
[PartialOrder α]
[h : WellFoundedLT α]
(a : ℕᵒᵈ →o α)
:
theorem
JN_le
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
(hmJ : ∀ (n : ℕ), IsLocalRing.maximalIdeal R ^ n ≤ J n)
[IsNoetherianRing R]
(k : ℕ)
:
theorem
seqx_aux_prop
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
[IsNoetherianRing R]
(i : ℕ)
(x : ↥(J (⋯.choose i)))
(n : ℕ)
:
theorem
adiccauchy
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
[IsNoetherianRing R]
(i : ℕ)
(x : ↥(J (⋯.choose i)))
:
AdicCompletion.IsAdicCauchy (IsLocalRing.maximalIdeal R) R (seqx J hJ i x)
theorem
sametopo'
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
(hmJ : ∀ (n : ℕ), IsLocalRing.maximalIdeal R ^ n ≤ J n)
[IsNoetherianRing R]
[Deformation.IsComplete R]
(n : ℕ)
:
∃ (k : ℕ), J k ≤ IsLocalRing.maximalIdeal R ^ n ⊔ iInf J
theorem
J_aux_anti
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
:
theorem
sametopo
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(J : ℕ → Ideal R)
(hJ : Antitone J)
[IsNoetherianRing R]
[Deformation.IsComplete R]
(hmJ : ∀ (n : ℕ), IsLocalRing.maximalIdeal R ^ (n + 2) ≤ J n)
(n : ℕ)
:
∃ (k : ℕ), J k ≤ IsLocalRing.maximalIdeal R ^ n ⊔ iInf J