theorem
comap_maxideal_general
{R : Type u_1}
{S : Type u_2}
{F : Type u_3}
[CommSemiring R]
[IsLocalRing R]
[CommSemiring S]
[IsLocalRing S]
[FunLike F R S]
[RingHomClass F R S]
(f : F)
[IsLocalHom f]
:
theorem
map_maxideal_general
{R : Type u_1}
{S : Type u_2}
{F : Type u_3}
[CommSemiring R]
[IsLocalRing R]
[CommSemiring S]
[IsLocalRing S]
[FunLike F R S]
[RingHomClass F R S]
(f : F)
(h : Function.Surjective ⇑f)
[IsLocalHom f]
:
theorem
comap_maxideal_pow_le_general
{R : Type u_1}
{S : Type u_2}
{F : Type u_3}
[CommSemiring R]
[IsLocalRing R]
[CommSemiring S]
[IsLocalRing S]
[FunLike F R S]
[RingHomClass F R S]
(f : F)
[IsLocalHom f]
(n : ℕ)
:
theorem
map_maxideal_pow_general
{R : Type u_1}
{S : Type u_2}
{F : Type u_3}
[CommSemiring R]
[IsLocalRing R]
[CommSemiring S]
[IsLocalRing S]
[FunLike F R S]
[RingHomClass F R S]
(f : F)
(h : Function.Surjective ⇑f)
[IsLocalHom f]
(n : ℕ)
:
instance
instNontrivialQuotientIdealOfQuotInC
(X : Type u)
[CommRing X]
[IsLocalRing X]
(J : Ideal X)
[QuotInC J]
:
Nontrivial (X ⧸ J)
- ideal : Ideal X
Instances For
theorem
QuotInC.maxideal_le
{X : Type u}
[CommRing X]
[IsLocalRing X]
(J : Ideal X)
[QuotInC J]
:
∃ (n : ℕ), IsLocalRing.maximalIdeal X ^ n ≤ J
instance
quotInC_inf
{R : Type u}
[CommRing R]
[IsLocalRing R]
{J K : Ideal R}
[QuotInC J]
[QuotInC K]
:
QuotInC (J ⊓ K)
instance
quotInC_sup
{R : Type u}
[CommRing R]
[IsLocalRing R]
{J K : Ideal R}
[QuotInC J]
[Nontrivial (R ⧸ K)]
:
QuotInC (J ⊔ K)
instance
quotInC_sup'
{R : Type u}
[CommRing R]
[IsLocalRing R]
{J K : Ideal R}
[QuotInC J]
[Nontrivial (R ⧸ K)]
:
QuotInC (K ⊔ J)
instance
is_artinian_of_quotInC
{X : Type u}
[CommRing X]
[IsLocalRing X]
[IsNoetherianRing X]
(J : Ideal X)
[QuotInC J]
:
IsArtinianRing (X ⧸ J)
theorem
QuotInC.of_nontrivial
{X : Type u}
[CommRing X]
[IsLocalRing X]
(J : Ideal X)
[Nontrivial (X ⧸ J)]
(h : ∃ (n : ℕ), IsLocalRing.maximalIdeal X ^ n ≤ J)
:
QuotInC J
instance
instNontrivialQuotientIdealHPowMaximalIdealHAddOfNat_schlessinger
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(n : ℕ)
:
Nontrivial (R ⧸ IsLocalRing.maximalIdeal R ^ (n + 1))
instance
instQuotInCHPowIdealMaximalIdealHAddOfNat
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(n : ℕ)
:
QuotInC (IsLocalRing.maximalIdeal R ^ (n + 1))
@[reducible, inline]
abbrev
quot_C
(Λ : Type u)
{X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
(J : Ideal X)
[QuotInC J]
:
X ⧸ J
as an ArtinResAlg
Equations
- quot_C Λ J = Deformation.ArtinResAlg.of Λ (X ⧸ J)
Instances For
@[reducible, inline]
abbrev
quot_maxideal_C
(Λ X : Type u)
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
(n : ℕ)
:
note: since we are in a category of local rings, quotient_in_C Λ X n
is defined to be $X ⧸ (𝔪 X) ^ (n + 1)
Equations
- quot_maxideal_C Λ X n = quot_C Λ (IsLocalRing.maximalIdeal X ^ (n + 1))
Instances For
Equations
Instances For
noncomputable def
transitionmap_C
(Λ : Type u)
{X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{I J : Ideal X}
[QuotInC I]
[QuotInC J]
(h : I ≤ J)
:
Equations
Instances For
@[simp]
theorem
transitionmap_C_hom_apply
(Λ : Type u)
{X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{I J : Ideal X}
[QuotInC I]
[QuotInC J]
(h : I ≤ J)
(a✝ : X ⧸ I)
:
noncomputable def
transitionmap_maxideal_C
(Λ X : Type u)
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{n m : ℕ}
(hmn : m ≤ n)
:
Equations
- transitionmap_maxideal_C Λ X hmn = transitionmap_C Λ ⋯
Instances For
@[simp]
theorem
transitionmap_maxideal_C_hom_apply
(Λ X : Type u)
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{n m : ℕ}
(hmn : m ≤ n)
(a✝ : X ⧸ IsLocalRing.maximalIdeal X ^ (n + 1))
:
@[simp]
theorem
transitionmap_C_self
{Λ : Type u}
[CommRing Λ]
(X : Type u)
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{I : Ideal X}
[QuotInC I]
:
theorem
transitionmap_maxideal_C_comp
{Λ : Type u}
(X : Type u)
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{n m l : ℕ}
(hlm : l ≤ m)
(hmn : m ≤ n)
:
CategoryTheory.CategoryStruct.comp (transitionmap_maxideal_C Λ X hmn) (transitionmap_maxideal_C Λ X hlm) = transitionmap_maxideal_C Λ X ⋯
@[simp]
theorem
transitionmap_C_comp
(Λ : Type u)
{X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{I J K : Ideal X}
[QuotInC I]
[QuotInC J]
[QuotInC K]
(hij : I ≤ J)
(hjk : J ≤ K)
:
CategoryTheory.CategoryStruct.comp (transitionmap_C Λ hij) (transitionmap_C Λ hjk) = transitionmap_C Λ ⋯
theorem
transitionmap_C_isiso_of_le_le
(Λ : Type u)
{X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{I J : Ideal X}
[QuotInC I]
[QuotInC J]
(hij : I ≤ J)
(hji : J ≤ I)
:
CategoryTheory.IsIso (transitionmap_C Λ hij)
def
quot_maxideal_C_map
{Λ X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsNoetherianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(f : X →ₐ[Λ] Y)
[IsLocalHom f]
(n : ℕ)
:
Equations
- quot_maxideal_C_map f n = Deformation.ArtinResAlg.ofHom (Ideal.quotientMapₐ (IsLocalRing.maximalIdeal Y ^ (n + 1)) f ⋯)
Instances For
theorem
quot_maxideal_C_map_commute
{Λ X : Type u}
[CommRing Λ]
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsNoetherianRing X]
[IsResidueAlgebra Λ X]
[IsLocalHom (algebraMap Λ X)]
{Y : Type u}
[CommRing Y]
[Algebra Λ Y]
[IsLocalRing Y]
[IsNoetherianRing Y]
[IsResidueAlgebra Λ Y]
[IsLocalHom (algebraMap Λ Y)]
(f : X →ₐ[Λ] Y)
[IsLocalHom f]
{n m : ℕ}
(hmn : m ≤ n)
:
def
quot_C_iso_of_eq
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
{J K : Ideal R}
[QuotInC J]
[QuotInC K]
(h : J = K)
:
Equations
Instances For
@[simp]
theorem
quot_C_iso_of_eq_comp_transition
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
{J K L : Ideal R}
[QuotInC J]
[QuotInC K]
[QuotInC L]
(h : J = K)
(le : L ≤ J)
:
CategoryTheory.CategoryStruct.comp (transitionmap_C Λ le) (quot_C_iso_of_eq Λ h).hom = transitionmap_C Λ ⋯
@[simp]
theorem
transition_comp_quot_C_iso_of_eq
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
{J K L : Ideal R}
[QuotInC J]
[QuotInC K]
[QuotInC L]
(h : J = K)
(le : K ≤ L)
:
CategoryTheory.CategoryStruct.comp (quot_C_iso_of_eq Λ h).hom (transitionmap_C Λ le) = transitionmap_C Λ ⋯
instance
quotInC_ker_to_artin
{Λ : Type u}
[CommRing Λ]
{B : Deformation.ArtinResAlg Λ}
{C : Deformation.ProArtinResAlg Λ}
(q : C ⟶ Deformation.inclusionFunctor.obj B)
:
QuotInC (RingHom.ker q.hom)
def
proartin_quot_mk
{Λ : Type u}
[CommRing Λ]
{C : Deformation.ProArtinResAlg Λ}
(I : Ideal ↑C)
[QuotInC I]
:
Equations
Instances For
theorem
proartin_quot_mk_surjective
{Λ : Type u}
[CommRing Λ]
{C : Deformation.ProArtinResAlg Λ}
(I : Ideal ↑C)
[QuotInC I]
:
theorem
proartin_quot_mk_transitionmap_C
{Λ : Type u}
[CommRing Λ]
{C : Deformation.ProArtinResAlg Λ}
(I J : Ideal ↑C)
[QuotInC I]
[QuotInC J]
(hIJ : I ≤ J)
:
def
proartin_to_artin_fac
{Λ : Type u}
[CommRing Λ]
{B : Deformation.ArtinResAlg Λ}
{C : Deformation.ProArtinResAlg Λ}
(q : C ⟶ Deformation.inclusionFunctor.obj B)
:
Equations
Instances For
theorem
proartin_to_artin_fac_comp
{Λ : Type u}
[CommRing Λ]
{B : Deformation.ArtinResAlg Λ}
{C : Deformation.ProArtinResAlg Λ}
(q : C ⟶ Deformation.inclusionFunctor.obj B)
: