Documentation

Schlessinger.Categories.Quotient

@[reducible, inline]
abbrev maxideal (X : Type u) [CommRing X] [IsLocalRing X] (n : ) :
Equations
Instances For
    class QuotInC {X : Type u} [CommRing X] [IsLocalRing X] (J : Ideal X) :
    Instances
      structure QuotCIdeal (X : Type u) [CommRing X] [IsLocalRing X] :
      Instances For
        theorem QuotInC.maxideal_le {X : Type u} [CommRing X] [IsLocalRing X] (J : Ideal X) [QuotInC J] :
        instance quotInC_inf {R : Type u} [CommRing R] [IsLocalRing R] {J K : Ideal R} [QuotInC J] [QuotInC K] :
        QuotInC (JK)
        instance quotInC_sup {R : Type u} [CommRing R] [IsLocalRing R] {J K : Ideal R} [QuotInC J] [Nontrivial (R K)] :
        QuotInC (JK)
        instance quotInC_sup' {R : Type u} [CommRing R] [IsLocalRing R] {J K : Ideal R} [QuotInC J] [Nontrivial (R K)] :
        QuotInC (KJ)
        theorem QuotInC.of_nontrivial {X : Type u} [CommRing X] [IsLocalRing X] (J : Ideal X) [Nontrivial (X J)] (h : ∃ (n : ), IsLocalRing.maximalIdeal X ^ n J) :
        @[reducible, inline]
        abbrev quot_C (Λ : Type u) {X : Type u} [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] (J : Ideal X) [QuotInC J] :

        X ⧸ J as an ArtinResAlg

        Equations
        Instances For
          @[reducible, inline]

          note: since we are in a category of local rings, quotient_in_C Λ X n is defined to be $X ⧸ (𝔪 X) ^ (n + 1)

          Equations
          Instances For
            noncomputable def transitionmap {X : Type u} [CommRing X] {I J : Ideal X} (h : I J) :
            X I →ₐ[X] X J
            Equations
            Instances For
              noncomputable def transitionmap_C (Λ : Type u) {X : Type u} [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {I J : Ideal X} [QuotInC I] [QuotInC J] (h : I J) :
              quot_C Λ I quot_C Λ J
              Equations
              Instances For
                @[simp]
                theorem transitionmap_C_hom_apply (Λ : Type u) {X : Type u} [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {I J : Ideal X} [QuotInC I] [QuotInC J] (h : I J) (a✝ : X I) :
                noncomputable def transitionmap_maxideal_C (Λ X : Type u) [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {n m : } (hmn : m n) :
                Equations
                Instances For
                  @[simp]
                  theorem transitionmap_maxideal_C_hom_apply (Λ X : Type u) [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {n m : } (hmn : m n) (a✝ : X IsLocalRing.maximalIdeal X ^ (n + 1)) :
                  @[simp]
                  theorem transitionmap_C_comp (Λ : Type u) {X : Type u} [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {I J K : Ideal X} [QuotInC I] [QuotInC J] [QuotInC K] (hij : I J) (hjk : J K) :
                  theorem transitionmap_C_isiso_of_le_le (Λ : Type u) {X : Type u} [CommRing Λ] [CommRing X] [Algebra Λ X] [IsLocalRing X] [IsNoetherianRing X] [IsResidueAlgebra Λ X] [IsLocalHom (algebraMap Λ X)] {I J : Ideal X} [QuotInC I] [QuotInC J] (hij : I J) (hji : J I) :
                  def quot_C_iso_of_eq (Λ : Type u) [CommRing Λ] [IsLocalRing Λ] {R : Type u} [CommRing R] [IsLocalRing R] [IsNoetherianRing R] [Algebra Λ R] [IsResidueAlgebra Λ R] {J K : Ideal R} [QuotInC J] [QuotInC K] (h : J = K) :
                  quot_C Λ J quot_C Λ K
                  Equations
                  Instances For
                    @[simp]
                    @[simp]