instance
instIsLocalRingTrivSqZeroExt_schlessinger
(Λ : Type u_1)
(M : Type u_3)
[CommRing Λ]
[IsLocalRing Λ]
[AddCommGroup M]
[Module Λ M]
[Module Λᵐᵒᵖ M]
[IsCentralScalar Λ M]
:
IsLocalRing (TrivSqZeroExt Λ M)
instance
instIsResidueAlgebraTrivSqZeroExt
(Λ : Type u_1)
(M : Type u_3)
[CommRing Λ]
[IsLocalRing Λ]
[AddCommGroup M]
[Module Λ M]
(X : Type u_4)
[CommRing X]
[Algebra Λ X]
[IsLocalRing X]
[IsResidueAlgebra Λ X]
[Module X M]
[Module Xᵐᵒᵖ M]
[IsCentralScalar X M]
[IsScalarTower Λ X M]
:
IsResidueAlgebra Λ (TrivSqZeroExt X M)
theorem
tsze_maxideal_sq
(k : Type u_2)
(M : Type u_3)
[AddCommGroup M]
[Field k]
[Module k M]
[Module kᵐᵒᵖ M]
[IsCentralScalar k M]
:
instance
instIsNoetherianRingTrivSqZeroExtOfFinite_schlessinger
(Λ : Type u_1)
(M : Type u_3)
[CommRing Λ]
[AddCommGroup M]
[Module Λ M]
[Module Λᵐᵒᵖ M]
[IsCentralScalar Λ M]
[IsNoetherianRing Λ]
[Module.Finite Λ M]
:
instance
instIsArtinianRingTrivSqZeroExtOfFinite_schlessinger
(k : Type u_2)
(M : Type u_3)
[AddCommGroup M]
[Field k]
[Module k M]
[Module kᵐᵒᵖ M]
[IsCentralScalar k M]
[Module.Finite k M]
:
IsArtinianRing (TrivSqZeroExt k M)
instance
instIsArtinianRingTrivSqZeroExtResidueFieldOfFinite_schlessinger
(Λ : Type u_1)
(M : Type u_3)
[CommRing Λ]
[IsLocalRing Λ]
[AddCommGroup M]
[Module Λ M]
[Module (IsLocalRing.ResidueField Λ) M]
[Module (IsLocalRing.ResidueField Λ)ᵐᵒᵖ M]
[IsCentralScalar (IsLocalRing.ResidueField Λ) M]
[IsScalarTower Λ (IsLocalRing.ResidueField Λ) M]
[h : Module.Finite Λ M]
: