noncomputable def
inversediagramJ
{Λ : Type u}
[CommRing Λ]
{A : Deformation.ProArtinResAlg Λ}
(J : ℕ → Ideal ↑A)
[∀ (n : ℕ), QuotInC (J n)]
(h : Antitone J)
:
For a decreasing sequence of ideals J
such that the quotients are in ArtinResAlg Λ
,
the diagram with objects A / (J n)
Equations
- inversediagramJ J h = { obj := fun (n : ℕᵒᵖ) => quot_C Λ (J (Opposite.unop n)), map := fun {X Y : ℕᵒᵖ} (f : X ⟶ Y) => transitionmap_C Λ ⋯, map_id := ⋯, map_comp := ⋯ }
Instances For
@[reducible, inline]
The diagram in ArtinResAlg Λ
with objects A / (maximalIdeal A ^ n.succ)
Equations
- inversediagram A = inversediagramJ (fun (n : ℕ) => IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯
Instances For
@[simp]
theorem
inversediagram_map_hom_apply
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ProArtinResAlg Λ)
{X✝ Y✝ : ℕᵒᵖ}
(f : X✝ ⟶ Y✝)
(a✝ : ↑A ⧸ (fun (n : ℕ) => IsLocalRing.maximalIdeal ↑A ^ n.succ) (Opposite.unop X✝))
:
@[simp]
theorem
inversediagram_obj_carrier
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ProArtinResAlg Λ)
(n : ℕᵒᵖ)
:
@[reducible, inline]
abbrev
CategoryTheory.Functor.completion_obj'
{Λ : Type u}
[CommRing Λ]
(F : Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
:
Type u
object part of the extension of a functor F
by taking
the projective limit of the F (A/m^n)
Equations
- F.completion_obj' A = CategoryTheory.Limits.limit ((inversediagram A).comp F)
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Functor.completionJ
{Λ : Type u}
[CommRing Λ]
(F : Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
(J : ℕ → Ideal ↑A)
[∀ (n : ℕ), QuotInC (J n)]
(h : Antitone J)
:
Type u
similarly to the extension of a functor F
, for any decreasing sequence of ideals J
inducing quotients in ArtinResAlg Λ
, the projective limit of the F (A/ J n)
Equations
- F.completionJ J h = CategoryTheory.Limits.limit ((inversediagramJ J h).comp F)
Instances For
@[simp]
theorem
limit_π_transitionmap_C
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
(J : ℕ → Ideal ↑A)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(i j : ℕ)
(hij : J i ≤ J j)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op i))
(F.map (transitionmap_C Λ hij)) = CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op j)
@[simp]
theorem
limit_π_transitionmap_C_apply
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
(J : ℕ → Ideal ↑A)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(i j : ℕ)
(hij : J i ≤ J j)
(x : F.completionJ J hJ)
:
F.map (transitionmap_C Λ hij) (CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op i) x) = CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op j) x
Equations
- inversediagram_map f = { app := fun (n : ℕᵒᵖ) => quot_maxideal_C_map f.hom (Opposite.unop n), naturality := ⋯ }
Instances For
@[simp]
theorem
inversediagram_map_app
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ProArtinResAlg Λ}
(f : A ⟶ B)
(n : ℕᵒᵖ)
:
@[simp]
@[simp]
theorem
inversediagram_map_comp
{Λ : Type u}
[CommRing Λ]
{A B C : Deformation.ProArtinResAlg Λ}
(f : A ⟶ B)
(g : B ⟶ C)
:
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Functor.completion_map'
{Λ : Type u}
[CommRing Λ]
(F : Functor (Deformation.ArtinResAlg Λ) (Type u))
{A B : Deformation.ProArtinResAlg Λ}
(f : A ⟶ B)
:
map part of the extension of a functor F
by taking the projective limit of (F A/m^n)
Equations
Instances For
noncomputable def
CategoryTheory.Functor.completion
{Λ : Type u}
[CommRing Λ]
(F : Functor (Deformation.ArtinResAlg Λ) (Type u))
:
extend a functor F
by taking the projective limit of the family F (A/m^n)
Equations
- F.completion = { obj := F.completion_obj', map := fun {X Y : Deformation.ProArtinResAlg Λ} => F.completion_map', map_id := ⋯, map_comp := ⋯ }
Instances For
noncomputable def
CategoryTheory.NatTrans.completion
{Λ : Type u}
[CommRing Λ]
{F G : Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : F ⟶ G)
:
Equations
- CategoryTheory.NatTrans.completion η = { app := fun (X : Deformation.ProArtinResAlg Λ) => CategoryTheory.Limits.limMap ((inversediagram X).whiskerLeft η), naturality := ⋯ }
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
limitcone_of_eventually_iso
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
(G : CategoryTheory.Functor ℕᵒᵖ C)
(n : ℕᵒᵖ)
(h : ∀ (m : ℕᵒᵖ) (f : m ⟶ n), CategoryTheory.IsIso (G.map f))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
limitcone_of_eventually_iso_cone_pt
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
(G : CategoryTheory.Functor ℕᵒᵖ C)
(n : ℕᵒᵖ)
(h : ∀ (m : ℕᵒᵖ) (f : m ⟶ n), CategoryTheory.IsIso (G.map f))
:
@[simp]
theorem
limitcone_of_eventually_iso_isLimit_lift
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
(G : CategoryTheory.Functor ℕᵒᵖ C)
(n : ℕᵒᵖ)
(h : ∀ (m : ℕᵒᵖ) (f : m ⟶ n), CategoryTheory.IsIso (G.map f))
(s : CategoryTheory.Limits.Cone G)
:
@[simp]
theorem
limitcone_of_eventually_iso_cone_π_app
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
(G : CategoryTheory.Functor ℕᵒᵖ C)
(n : ℕᵒᵖ)
(h : ∀ (m : ℕᵒᵖ) (f : m ⟶ n), CategoryTheory.IsIso (G.map f))
(m : ℕᵒᵖ)
:
(limitcone_of_eventually_iso C G n h).cone.π.app m = if f : Opposite.unop m ≤ Opposite.unop n then G.map (CategoryTheory.opHomOfLE f)
else CategoryTheory.inv (G.map (CategoryTheory.opHomOfLE ⋯))
Equations
- artin_inversediagram_cone A = { pt := A, π := { app := fun (n : ℕᵒᵖ) => Deformation.ArtinResAlg.ofHom (Ideal.Quotient.mkₐ Λ (maxideal (↑A) (Opposite.unop n))), naturality := ⋯ } }
Instances For
@[simp]
theorem
artin_inversediagram_cone_π_app_hom_apply
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ArtinResAlg Λ)
(n : ℕᵒᵖ)
(a : ↑A)
:
((artin_inversediagram_cone A).π.app n).hom a = (Ideal.Quotient.mk (maxideal (↑A) (Opposite.unop n))) a
@[simp]
def
auxequiv
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ArtinResAlg Λ)
(n : ℕ)
(hn : IsLocalRing.maximalIdeal ↑A ^ (n + 1) = 0)
:
Equations
- auxequiv A n hn = (Ideal.quotientEquivAlgOfEq Λ ⋯).trans (AlgEquiv.quotientBot Λ ↑(Deformation.inclusionFunctor.obj A))
Instances For
theorem
isiso_transitionmap
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ArtinResAlg Λ)
(n : ℕ)
(hn : IsLocalRing.maximalIdeal ↑A ^ (n + 1) = 0)
(m : ℕ)
(hmn : m ≥ n)
:
noncomputable def
completion_iso_n
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ArtinResAlg Λ)
(n : ℕ)
(hn : IsLocalRing.maximalIdeal ↑A ^ (n + 1) = 0)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
completion_iso
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ArtinResAlg Λ)
:
Equations
- completion_iso F A = completion_iso_n F A (Exists.choose ⋯) ⋯
Instances For
@[simp]
theorem
completion_iso_inv_π
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ArtinResAlg Λ)
(n : ℕᵒᵖ)
:
CategoryTheory.CategoryStruct.comp (completion_iso F A).inv
(CategoryTheory.Limits.limit.π ((inversediagram (Deformation.inclusionFunctor.obj A)).comp F) n) = F.map ((artin_inversediagram_cone A).π.app n)
noncomputable def
natiso_completion
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
:
Equations
- natiso_completion F = CategoryTheory.NatIso.ofComponents (fun (x : Deformation.ArtinResAlg Λ) => (completion_iso F x).symm) ⋯
Instances For
@[simp]
theorem
completion_iso_map_hom
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{X Y : Deformation.ArtinResAlg Λ}
(f : X ⟶ Y)
(x : F.completion.obj (Deformation.inclusionFunctor.obj X))
:
(completion_iso F Y).hom (F.completion.map (Deformation.inclusionFunctor.map f) x) = F.map f ((completion_iso F X).hom x)
theorem
antitone_sup_maxideal
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
:
Antitone fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ
noncomputable def
quot_quot_iso
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
(n : ℕ)
:
quot_C Λ (IsLocalRing.maximalIdeal (↑A ⧸ J) ^ (n + 1)) ≅ quot_C Λ (J ⊔ IsLocalRing.maximalIdeal ↑A ^ (n + 1))
Equations
- quot_quot_iso A J n = Deformation.ArtinResAlg.ofEquiv ((Ideal.quotientEquivAlgOfEq Λ ⋯).trans (DoubleQuot.quotQuotEquivQuotSupₐ Λ J (IsLocalRing.maximalIdeal ↑A ^ (n + 1))))
Instances For
noncomputable def
inversediagram_quot_iso
{Λ : Type u}
[CommRing Λ]
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
:
inversediagram (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J)) ≅ inversediagramJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯
Equations
- inversediagram_quot_iso A J = CategoryTheory.NatIso.ofComponents (fun (n : ℕᵒᵖ) => quot_quot_iso A J (Opposite.unop n)) ⋯
Instances For
noncomputable def
completion_quot_iso
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
:
F.completion.obj (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J)) ≅ F.completionJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯
Equations
Instances For
@[simp]
theorem
completion_quot_iso_hom_π
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
(j : ℕᵒᵖ)
:
CategoryTheory.CategoryStruct.comp (completion_quot_iso F A J).hom
(CategoryTheory.Limits.limit.π
((inversediagramJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯).comp F) j) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((inversediagram (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J))).comp F) j)
(F.map (quot_quot_iso A J (Opposite.unop j)).hom)
@[simp]
theorem
completion_quot_iso_hom_π_apply
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
(j : ℕᵒᵖ)
(x : F.completion.obj (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J)))
:
CategoryTheory.Limits.limit.π ((inversediagramJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯).comp F) j
((completion_quot_iso F A J).hom x) = F.map (quot_quot_iso A J (Opposite.unop j)).hom
(CategoryTheory.Limits.limit.π ((inversediagram (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J))).comp F) j x)
@[simp]
theorem
completion_quot_iso_inv_π
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
(j : ℕᵒᵖ)
:
CategoryTheory.CategoryStruct.comp (completion_quot_iso F A J).inv
(CategoryTheory.Limits.limit.π ((inversediagram (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J))).comp F) j) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π
((inversediagramJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯).comp F) j)
(F.map (quot_quot_iso A J (Opposite.unop j)).inv)
@[simp]
theorem
completion_quot_iso_inv_π_apply
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A : Deformation.ProArtinResAlg Λ)
(J : Ideal ↑A)
[Nontrivial (↑A ⧸ J)]
[Deformation.IsComplete (↑A ⧸ J)]
(j : ℕᵒᵖ)
(x : F.completionJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯)
:
CategoryTheory.Limits.limit.π ((inversediagram (Deformation.ProArtinResAlg.of Λ (↑A ⧸ J))).comp F) j
((completion_quot_iso F A J).inv x) = F.map (quot_quot_iso A J (Opposite.unop j)).inv
(CategoryTheory.Limits.limit.π
((inversediagramJ (fun (n : ℕ) => J ⊔ IsLocalRing.maximalIdeal ↑A ^ n.succ) ⋯).comp F) j x)
noncomputable def
completion_cone_of_le
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
:
CategoryTheory.Limits.Cone ((inversediagramJ J hJ).comp F)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
completion_cone_of_le_pt
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
:
@[simp]
theorem
completion_cone_of_le_π_app
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(j : ℕᵒᵖ)
(a✝ : ((CategoryTheory.Functor.const ℕᵒᵖ).obj (F.completionJ I hI)).obj j)
:
(completion_cone_of_le F hI hJ hIJ).π.app j a✝ = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((inversediagramJ I hI).comp F) (Opposite.op ⋯.choose)) (F.map (transitionmap_C Λ ⋯))
a✝
noncomputable def
completion_map_of_le
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
:
Equations
- completion_map_of_le F hI hJ hIJ = CategoryTheory.Limits.limit.lift ((inversediagramJ J hJ).comp F) (completion_cone_of_le F hI hJ hIJ)
Instances For
@[simp]
theorem
completion_map_of_le_π
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(j : ℕ)
:
CategoryTheory.CategoryStruct.comp (completion_map_of_le F hI hJ hIJ)
(CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op j)) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((inversediagramJ I hI).comp F) (Opposite.op ⋯.choose)) (F.map (transitionmap_C Λ ⋯))
@[simp]
theorem
completion_map_of_le_π_apply
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(j : ℕ)
(x : F.completionJ I hI)
:
CategoryTheory.Limits.limit.π ((inversediagramJ J hJ).comp F) (Opposite.op j) (completion_map_of_le F hI hJ hIJ x) = F.map (transitionmap_C Λ ⋯) (CategoryTheory.Limits.limit.π ((inversediagramJ I hI).comp F) (Opposite.op ⋯.choose) x)
@[simp]
theorem
completion_map_of_le_le_id
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(hJI : ∀ (n : ℕ), ∃ (m : ℕ), J m ≤ I n)
:
CategoryTheory.CategoryStruct.comp (completion_map_of_le F hI hJ hIJ) (completion_map_of_le F hJ hI hJI) = CategoryTheory.CategoryStruct.id (F.completionJ I hI)
@[simp]
theorem
completion_map_of_le_le_id_apply
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(hJI : ∀ (n : ℕ), ∃ (m : ℕ), J m ≤ I n)
(x : F.completionJ I hI)
:
noncomputable def
completion_iso_of_le_ge
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(hJI : ∀ (n : ℕ), ∃ (m : ℕ), J m ≤ I n)
:
Equations
- completion_iso_of_le_ge F hI hJ hIJ hJI = { hom := completion_map_of_le F hI hJ hIJ, inv := completion_map_of_le F hJ hI hJI, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
completion_iso_of_le_ge_inv
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(hJI : ∀ (n : ℕ), ∃ (m : ℕ), J m ≤ I n)
(a✝ : F.completionJ J hJ)
:
@[simp]
theorem
completion_iso_of_le_ge_hom
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
{I J : ℕ → Ideal ↑A}
[∀ (n : ℕ), QuotInC (I n)]
(hI : Antitone I)
[∀ (n : ℕ), QuotInC (J n)]
(hJ : Antitone J)
(hIJ : ∀ (n : ℕ), ∃ (m : ℕ), I m ≤ J n)
(hJI : ∀ (n : ℕ), ∃ (m : ℕ), J m ≤ I n)
(a✝ : F.completionJ I hI)
: