Documentation

Schlessinger.Defs.Completion

noncomputable def inversediagramJ {Λ : Type u} [CommRing Λ] {A : Deformation.ProArtinResAlg Λ} (J : Ideal A) [∀ (n : ), QuotInC (J n)] (h : Antitone J) :

For a decreasing sequence of ideals J such that the quotients are in ArtinResAlg Λ, the diagram with objects A / (J n)

Equations
Instances For
    @[simp]
    theorem inversediagramJ_map {Λ : Type u} [CommRing Λ] {A : Deformation.ProArtinResAlg Λ} (J : Ideal A) [∀ (n : ), QuotInC (J n)] (h : Antitone J) {X✝ Y✝ : ᵒᵖ} (f : X✝ Y✝) :
    @[simp]
    theorem inversediagramJ_obj_carrier {Λ : Type u} [CommRing Λ] {A : Deformation.ProArtinResAlg Λ} (J : Ideal A) [∀ (n : ), QuotInC (J n)] (h : Antitone J) (n : ᵒᵖ) :
    ((inversediagramJ J h).obj n) = (A J (Opposite.unop n))
    @[reducible, inline]

    The diagram in ArtinResAlg Λ with objects A / (maximalIdeal A ^ n.succ)

    Equations
    Instances For
      @[simp]
      theorem inversediagram_map_hom_apply {Λ : Type u} [CommRing Λ] (A : Deformation.ProArtinResAlg Λ) {X✝ Y✝ : ᵒᵖ} (f : X✝ Y✝) (a✝ : A (fun (n : ) => IsLocalRing.maximalIdeal A ^ n.succ) (Opposite.unop X✝)) :
      ((inversediagram A).map f).hom a✝ = (Ideal.Quotient.factorₐ A ) a✝
      @[reducible, inline]

      object part of the extension of a functor F by taking the projective limit of the F (A/m^n)

      Equations
      Instances For
        @[reducible, inline]
        abbrev CategoryTheory.Functor.completionJ {Λ : Type u} [CommRing Λ] (F : Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} (J : Ideal A) [∀ (n : ), QuotInC (J n)] (h : Antitone J) :

        similarly to the extension of a functor F, for any decreasing sequence of ideals J inducing quotients in ArtinResAlg Λ, the projective limit of the F (A/ J n)

        Equations
        Instances For
          @[simp]
          Equations
          Instances For
            @[reducible, inline]

            map part of the extension of a functor F by taking the projective limit of (F A/m^n)

            Equations
            Instances For

              extend a functor F by taking the projective limit of the family F (A/m^n)

              Equations
              Instances For
                noncomputable def CategoryTheory.NatTrans.completion {Λ : Type u} [CommRing Λ] {F G : Functor (Deformation.ArtinResAlg Λ) (Type u)} (η : F G) :
                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem isiso_transitionmap {Λ : Type u} [CommRing Λ] (A : Deformation.ArtinResAlg Λ) (n : ) (hn : IsLocalRing.maximalIdeal A ^ (n + 1) = 0) (m : ) (hmn : m n) :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem antitone_sup_maxideal {Λ : Type u} [CommRing Λ] (A : Deformation.ProArtinResAlg Λ) (J : Ideal A) :
                        Antitone fun (n : ) => JIsLocalRing.maximalIdeal A ^ n.succ
                        noncomputable def quot_quot_iso {Λ : Type u} [CommRing Λ] (A : Deformation.ProArtinResAlg Λ) (J : Ideal A) [Nontrivial (A J)] (n : ) :
                        quot_C Λ (IsLocalRing.maximalIdeal (A J) ^ (n + 1)) quot_C Λ (JIsLocalRing.maximalIdeal A ^ (n + 1))
                        Equations
                        Instances For
                          noncomputable def completion_cone_of_le {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem completion_cone_of_le_pt {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) :
                            (completion_cone_of_le F hI hJ hIJ).pt = F.completionJ I hI
                            @[simp]
                            theorem completion_cone_of_le_π_app {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (j : ᵒᵖ) (a✝ : ((CategoryTheory.Functor.const ᵒᵖ).obj (F.completionJ I hI)).obj j) :
                            noncomputable def completion_map_of_le {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) :
                            Equations
                            Instances For
                              @[simp]
                              theorem completion_map_of_le_π_apply {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (j : ) (x : F.completionJ I hI) :
                              @[simp]
                              theorem completion_map_of_le_le_id {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (hJI : ∀ (n : ), ∃ (m : ), J m I n) :
                              @[simp]
                              theorem completion_map_of_le_le_id_apply {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (hJI : ∀ (n : ), ∃ (m : ), J m I n) (x : F.completionJ I hI) :
                              completion_map_of_le F hJ hI hJI (completion_map_of_le F hI hJ hIJ x) = x
                              noncomputable def completion_iso_of_le_ge {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (hJI : ∀ (n : ), ∃ (m : ), J m I n) :
                              Equations
                              Instances For
                                @[simp]
                                theorem completion_iso_of_le_ge_inv {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (hJI : ∀ (n : ), ∃ (m : ), J m I n) (a✝ : F.completionJ J hJ) :
                                (completion_iso_of_le_ge F hI hJ hIJ hJI).inv a✝ = completion_map_of_le F hJ hI hJI a✝
                                @[simp]
                                theorem completion_iso_of_le_ge_hom {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {A : Deformation.ProArtinResAlg Λ} {I J : Ideal A} [∀ (n : ), QuotInC (I n)] (hI : Antitone I) [∀ (n : ), QuotInC (J n)] (hJ : Antitone J) (hIJ : ∀ (n : ), ∃ (m : ), I m J n) (hJI : ∀ (n : ), ∃ (m : ), J m I n) (a✝ : F.completionJ I hI) :
                                (completion_iso_of_le_ge F hI hJ hIJ hJI).hom a✝ = completion_map_of_le F hI hJ hIJ a✝