@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev
tangentSpace
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
:
Type u
the tangent space of a functor F
is F(k[ε])
where k[ε]
is the ring of dual numbers over
the residue field k
of Λ
(i.e. ε² = 0
).
If F = h_R
, then it is Hom(R, k[ε])
, which is the usual tangent space of R
.
Equations
- tangentSpace F = F.obj dualNumber_C
Instances For
Equations
- fintsze r = Deformation.tsze_C Λ (finmodule (IsLocalRing.ResidueField Λ) r)
Instances For
Equations
Instances For
Equations
- isofinonek R = (LinearEquiv.funUnique (Fin 1) R R).toFGModuleCatIso
Instances For
Equations
- isofinsucc R r = (Fin.consLinearEquiv R fun (x : Fin r.succ) => R).symm.toFGModuleCatIso
Instances For
Equations
- vs.finrR r x✝ = FGModuleCat.of R R
Instances For
The product cone induced by the concrete product.
Equations
- vs.productCone Z = CategoryTheory.Limits.Fan.mk (FGModuleCat.of R ((i : ι) → ↑(Z i))) fun (i : ι) => FGModuleCat.ofHom (LinearMap.proj i)
Instances For
def
vs.productConeIsLimit
{R : Type u}
[CommRing R]
{ι : Type v}
[Finite ι]
(Z : ι → FGModuleCat R)
:
The concrete product cone is limiting.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
vs.piIsoPi
{R : Type u}
[CommRing R]
{ι : Type v}
[Finite ι]
(Z : ι → FGModuleCat R)
[CategoryTheory.Limits.HasProduct Z]
:
The categorical product of a family of objects in ModuleCat
agrees with the usual module-theoretical product.
Equations
- vs.piIsoPi Z = CategoryTheory.Limits.limit.isoLimitCone { cone := vs.productCone Z, isLimit := vs.productConeIsLimit Z }
Instances For
@[simp]
theorem
vs.piIsoPi_inv_kernel_ι
{R : Type u}
[CommRing R]
{ι : Type v}
[Finite ι]
(Z : ι → FGModuleCat R)
[CategoryTheory.Limits.HasProduct Z]
(i : ι)
:
@[simp]
theorem
vs.piIsoPi_hom_ker_subtype
{R : Type u}
[CommRing R]
{ι : Type v}
[Finite ι]
(Z : ι → FGModuleCat R)
[CategoryTheory.Limits.HasProduct Z]
(i : ι)
:
Equations
Instances For
class
H2
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
:
- cond (A' : Deformation.ArtinResAlg Λ) : CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.pair A' dualNumber_C) F
Instances
instance
instIsIsoProdObjArtinResAlgFintszeOfNatNatFst
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(A' : Deformation.ArtinResAlg Λ)
:
instance
instIsIsoArtinResAlgFst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(A' : Deformation.ArtinResAlg Λ)
:
theorem
prodcomparisoneqzero
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(A' : Deformation.ArtinResAlg Λ)
:
instance
instIsIsoObjArtinResAlgProdFintszeOfNatNatProdComparison
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(A' : Deformation.ArtinResAlg Λ)
:
instance
instPreservesLimitArtinResAlgDiscreteWalkingPairPairDualNumber_C
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[H2 F]
(A' : Deformation.ArtinResAlg Λ)
:
instance
instPreservesLimitArtinResAlgDiscreteWalkingPairPairFintszeOfNatNat
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[H2 F]
(A' : Deformation.ArtinResAlg Λ)
:
noncomputable def
auxisosucc
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[H2 F]
(r : ℕ)
(A' : Deformation.ArtinResAlg Λ)
[∀ (A'' : Deformation.ArtinResAlg Λ),
CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.pair A'' (fintsze r)) F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
auxisosucc_eq_prodcomparison
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[H2 F]
(r : ℕ)
(A' : Deformation.ArtinResAlg Λ)
[∀ (A'' : Deformation.ArtinResAlg Λ),
CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.pair A'' (fintsze r)) F]
:
instance
instPreservesLimitArtinResAlgDiscreteWalkingPairPairFintszeOfH2
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(r : ℕ)
(A' : Deformation.ArtinResAlg Λ)
[H2 F]
:
instance
instPreservesLimitArtinResAlgDiscreteWalkingPairPairObjFGModuleCatResidueFieldTsze_functorOfH2
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(A' : Deformation.ArtinResAlg Λ)
[H2 F]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
instance
instPreservesLimitArtinResAlgDiscreteWalkingPairCompFGModuleCatResidueFieldPairTsze_functor
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
instance
instPreservesLimitsOfShapeFGModuleCatResidueFieldDiscreteWalkingPairCompArtinResAlgTsze_functor
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
: