noncomputable def
Deformation.pullbackproduct
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
Equations
Instances For
noncomputable def
Deformation.productcone
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
Equations
Instances For
noncomputable def
Deformation.islimitproduct
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Deformation.productlift
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
:
Equations
Instances For
@[simp]
theorem
Deformation.productlift_fst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
:
@[simp]
theorem
Deformation.productlift_snd
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
:
@[simp]
theorem
Deformation.productlift_fstinC
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
:
@[simp]
theorem
Deformation.productlift_sndinC
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
:
@[simp]
theorem
Deformation.productcone_fst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{X Y : ArtinResAlg Λ}
:
@[simp]
theorem
Deformation.productcone_snd
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{X Y : ArtinResAlg Λ}
:
@[simp]
theorem
Deformation.productlift_fstinC_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
(x : ↑W)
:
@[simp]
theorem
Deformation.productlift_sndinC_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
{W X Y : ArtinResAlg Λ}
(f : W ⟶ X)
(g : W ⟶ Y)
(x : ↑W)
:
noncomputable def
Deformation.prodiso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
Equations
- Deformation.prodiso X Y = CategoryTheory.Limits.limit.isoLimitCone { cone := Deformation.productcone X Y, isLimit := Deformation.islimitproduct X Y }
Instances For
@[simp]
theorem
Deformation.prodiso_hom_fst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
@[simp]
theorem
Deformation.prodiso_hom_snd
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
@[simp]
theorem
Deformation.prodiso_inv_fst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
@[simp]
theorem
Deformation.prodiso_inv_snd
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
theorem
Deformation.product_toResidueField
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
theorem
Deformation.product_residue
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y : ArtinResAlg Λ}
(x : ↑(pullbackproduct X Y))
:
theorem
Deformation.product_toResidueField1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X Y : ArtinResAlg Λ)
:
theorem
Deformation.product_residue1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X Y : ArtinResAlg Λ}
(x : ↑(pullbackproduct X Y))
:
noncomputable def
Deformation.instModuleCarrierResidueField_schlessinger
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Module Λ ↑M
Equations
Instances For
theorem
Deformation.instIsScalarTowerResidueFieldCarrier_schlessinger
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
IsScalarTower Λ (IsLocalRing.ResidueField Λ) ↑M
noncomputable def
Deformation.instModuleMulOppositeResidueFieldCarrier_schlessinger
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
theorem
Deformation.instIsCentralScalarResidueFieldCarrier_schlessinger
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
noncomputable def
Deformation.tsze_C
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
theorem
Deformation.eq_tsze_C
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
noncomputable def
Deformation.tsze_C_fst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
@[simp]
theorem
Deformation.tsze_C_fst_hom_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(x : TrivSqZeroExt (IsLocalRing.ResidueField Λ) ↑M)
:
theorem
Deformation.tsze_C_fst_hom
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
noncomputable def
Deformation.tsze_C_inl
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
@[simp]
theorem
Deformation.tsze_C_inl_hom_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(a✝ : IsLocalRing.ResidueField Λ)
:
(tsze_C_inl Λ M).hom a✝ = (Algebra.ofId (IsLocalRing.ResidueField Λ) (TrivSqZeroExt (IsLocalRing.ResidueField Λ) ↑M)) a✝
theorem
Deformation.tsze_C_inl_hom
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(x : IsLocalRing.ResidueField Λ)
:
theorem
Deformation.tsze_fst_eq_residue
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(x : ↑(tsze_C Λ M))
:
theorem
Deformation.lem1'
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(f : tsze_C Λ M ⟶ tsze_C Λ N)
(x : ↑(tsze_C Λ M))
:
theorem
Deformation.lem1
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(f : tsze_C Λ M ⟶ tsze_C Λ N)
(x : IsLocalRing.ResidueField Λ)
:
theorem
Deformation.lem2
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(f : tsze_C Λ M ⟶ tsze_C Λ N)
(x : IsLocalRing.ResidueField Λ)
:
theorem
Deformation.lem3
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(f : tsze_C Λ M ⟶ tsze_C Λ N)
(x : ↑M)
:
noncomputable def
Deformation.tsze_C_map
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{M N : FGModuleCat (IsLocalRing.ResidueField Λ)}
(f : ↑M →ₗ[IsLocalRing.ResidueField Λ] ↑N)
:
Equations
Instances For
@[simp]
theorem
Deformation.tsze_C_map_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(f : ↑M →ₗ[IsLocalRing.ResidueField Λ] ↑N)
(x : ↑(tsze_C Λ M))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Deformation.tsze_functor_map
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X✝ Y✝ : FGModuleCat (IsLocalRing.ResidueField Λ)}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
Deformation.tsze_functor_obj
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
noncomputable def
Deformation.fstHom_C
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
theorem
Deformation.hom_comp_fst_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{M N : FGModuleCat (IsLocalRing.ResidueField Λ)}
{A : ArtinResAlg Λ}
(f : A ⟶ tsze_C Λ M)
(g : A ⟶ tsze_C Λ N)
:
theorem
Deformation.fst_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{M N : FGModuleCat (IsLocalRing.ResidueField Λ)}
{A : ArtinResAlg Λ}
(f : A ⟶ tsze_C Λ M)
(g : A ⟶ tsze_C Λ N)
(x : ↑A)
:
noncomputable def
Deformation.prodfst
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
FGModuleCat.of (IsLocalRing.ResidueField Λ) (↑M × ↑N) ⟶ FGModuleCat.of (IsLocalRing.ResidueField Λ) ↑M
Equations
- Deformation.prodfst Λ M N = FGModuleCat.ofHom (LinearMap.fst (IsLocalRing.ResidueField Λ) ↑M ↑N)
Instances For
noncomputable def
Deformation.prodsnd
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
FGModuleCat.of (IsLocalRing.ResidueField Λ) (↑M × ↑N) ⟶ FGModuleCat.of (IsLocalRing.ResidueField Λ) ↑N
Equations
- Deformation.prodsnd Λ M N = FGModuleCat.ofHom (LinearMap.snd (IsLocalRing.ResidueField Λ) ↑M ↑N)
Instances For
noncomputable def
Deformation.tsze_prod_cone
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
CategoryTheory.Limits.BinaryFan (tsze_C Λ M) (tsze_C Λ N)
Equations
Instances For
@[simp]
theorem
Deformation.tsze_prod_cone_π_app
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(x✝ : CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
:
(tsze_prod_cone Λ M N).π.app x✝ = match x✝.as with
| CategoryTheory.Limits.WalkingPair.left => tsze_C_map (LinearMap.fst (IsLocalRing.ResidueField Λ) ↑M ↑N)
| CategoryTheory.Limits.WalkingPair.right => tsze_C_map (LinearMap.snd (IsLocalRing.ResidueField Λ) ↑M ↑N)
@[simp]
theorem
Deformation.tsze_prod_cone_pt_carrier
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
noncomputable def
Deformation.tsze_prod_lift
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(s : CategoryTheory.Limits.BinaryFan (tsze_C Λ M) (tsze_C Λ N))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Deformation.tsze_prod_lift_apply
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(s : CategoryTheory.Limits.BinaryFan (tsze_C Λ M) (tsze_C Λ N))
(x : ↑s.pt)
:
(tsze_prod_lift Λ M N s) x = TrivSqZeroExt.inl (TrivSqZeroExt.fst (s.fst.hom x)) + TrivSqZeroExt.inr (TrivSqZeroExt.snd (s.fst.hom x), TrivSqZeroExt.snd (s.snd.hom x))
noncomputable def
Deformation.tsze_prod_lift_hom
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
(s : CategoryTheory.Limits.BinaryFan (tsze_C Λ M) (tsze_C Λ N))
:
Equations
Instances For
noncomputable def
Deformation.tsze_prod_limit
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
Instances For
noncomputable def
Deformation.prodcone_iso
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M N : FGModuleCat (IsLocalRing.ResidueField Λ))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
Deformation.instPreservesLimitsOfShapeArtinResAlgDiscretePEmpty
(Λ : Type u)
[CommRing Λ]
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
:
instance
Deformation.instPreservesFiniteProductsFGModuleCatResidueFieldCompArtinResAlgTsze_functor
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
:
noncomputable instance
Deformation.instAddCommGroupObjArtinResAlgTsze_C
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
:
AddCommGroup (F.obj (tsze_C Λ M))
Equations
noncomputable instance
Deformation.instModuleResidueFieldObjArtinResAlgTsze_C
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
:
Module (IsLocalRing.ResidueField Λ) (F.obj (tsze_C Λ M))
Equations
noncomputable instance
Deformation.instUniqueObjArtinResAlgTsze_COfNatFGModuleCatResidueField
(Λ : Type u)
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
:
noncomputable def
Deformation.zero_map
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(B : ArtinResAlg Λ)
:
Equations
Instances For
noncomputable def
Deformation.zero_map'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(B : ArtinResAlg Λ)
:
Equations
Instances For
@[simp]
theorem
Deformation.zero_map_F
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
(B : ArtinResAlg Λ)
(x : F.obj B)
:
@[simp]
theorem
Deformation.zero_map'_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
(B : ArtinResAlg Λ)
(x : ↑B)
:
theorem
Deformation.nattrans_isLinear
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (ArtinResAlg Λ) (Type u)}
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) F]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp F)]
{G : CategoryTheory.Functor (ArtinResAlg Λ) (Type u)}
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (ArtinResAlg Λ)) G]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair)
(tsze_functor.comp G)]
(η : G ⟶ F)
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
IsLinearMap (IsLocalRing.ResidueField Λ) (η.app (tsze_C Λ M))