def of IsEssential and lemma 1.4 (ii)
A morphism p
in ArtinResAlg Λ
is essential if for any morphism q
such that
q ≫ p
is surjective, q
is surjective
Equations
- IsEssential p = ∀ (C : Deformation.ArtinResAlg Λ) (q : C ⟶ B), Function.Surjective ⇑(CategoryTheory.CategoryStruct.comp q p).hom → Function.Surjective ⇑q.hom
Instances For
theorem
lem14ii
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
{p : B ⟶ A}
(h : Function.Surjective ⇑p.hom)
[hsmall : IsSmallExtension p]
:
theorem
proartin_hom_surj
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
{p : B ⟶ A}
{C : Deformation.ProArtinResAlg Λ}
(essen : IsEssential p)
(q : C ⟶ Deformation.inclusionFunctor.obj B)
(h : Function.Surjective ⇑(CategoryTheory.CategoryStruct.comp q (Deformation.inclusionFunctor.map p)).hom)
: