Documentation

Schlessinger.Lemmas.Remark215

theorem rk215.residueField_smul {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) [IsSmallExtension p] (r : Λ) (x : (RingHom.ker p.hom)) :
@[simp]
theorem rk215.preimage_smul {Λ : Type u} [CommRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) [IsSmallExtension p] (r : B) (x : (RingHom.ker p.hom)) :
def rk215.hom1 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) :
Equations
Instances For
    theorem rk215.mem_kerp {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) (x : (pullbackinC p p)) :
    (↑x).2 - (↑x).1 RingHom.ker p.hom
    @[simp]
    theorem rk215.subtype_zero (R : Type u_1) [Ring R] (J : Ideal R) (h : 0 J) :
    0, h = 0
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Module.IsTorsionBySet.zero_of_mem (R : Type u_1) (M : Type u_2) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set R) (h : IsTorsionBySet R M s) (r : R) (x : M) (hr : r s) :
      r x = 0
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem rk215.inv2_apply {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) [IsSmallExtension p] (x : (Deformation.pullbackproduct B (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) (RingHom.ker p.hom))))) :
        (inv2 p).hom x = (↑x).1 + (↑x).2.2
        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem rk215.app1_fst {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) [IsSmallExtension p] {F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} (η : G F) (a✝ : G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) (RingHom.ker p.hom)))) :
            (app1 p η a✝).1 = η.app B a✝.1
            Equations
            Instances For
              @[simp]
              theorem rk215.app2_coe {Λ : Type u} [CommRing Λ] {A B : Deformation.ArtinResAlg Λ} (p : B A) {F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} (η : G F) (a✝ : CategoryTheory.Limits.Types.PullbackObj (G.map p) (G.map p)) :
              (app2 p η a✝) = (η.app B (↑a✝).1, η.app B (↑a✝).2)