def
rk215.instModuleResidueFieldSubtypeCarrierMemIdealKerAlgHomHom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Module (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)
Instances For
theorem
rk215.instIsScalarTowerResidueFieldSubtypeCarrierMemIdealKerAlgHomHom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
IsScalarTower Λ (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)
theorem
rk215.residueField_smul
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(r : Λ)
(x : ↥(RingHom.ker p.hom))
:
@[simp]
theorem
rk215.preimage_smul
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(r : ↑B)
(x : ↥(RingHom.ker p.hom))
:
instance
rk215.instFiniteSubtypeCarrierMemIdealKerAlgHomHom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
:
Module.Finite Λ ↥(RingHom.ker p.hom)
instance
rk215.instFiniteResidueFieldSubtypeCarrierMemIdealKerAlgHomHom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
def
rk215.hom1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
:
Equations
- rk215.hom1 p = fstinC p p
Instances For
theorem
rk215.mem_kerp
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
(x : ↑(pullbackinC p p))
:
noncomputable def
rk215.hom2_alghom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
↑(pullbackinC p p) →ₐ[Λ] ↑(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
rk215.hom2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
pullbackinC p p ⟶ Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))
Equations
Instances For
noncomputable def
rk215.hom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
pullbackinC p p ⟶ Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
Equations
- rk215.hom p = Deformation.productlift (rk215.hom1 p) (rk215.hom2 p)
Instances For
noncomputable def
rk215.inv1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) ⟶ B
Equations
- rk215.inv1 p = (Deformation.productcone B (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))).fst
Instances For
@[simp]
theorem
rk215.inv1_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(x :
↑(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
:
theorem
Module.IsTorsionBySet.zero_of_mem
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set R)
(h : IsTorsionBySet R M s)
(r : R)
(x : M)
(hr : r ∈ s)
:
noncomputable def
rk215.inv2_alghom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
↑(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))) →ₐ[Λ] ↑B
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
rk215.inv2_alghom_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(x :
↑(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
:
(inv2_alghom p) x = (fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField).hom
x + ↑((TrivSqZeroExt.sndHom (IsLocalRing.ResidueField Λ)
↑(FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
((sndinC B.toResidueField
(Deformation.tsze_C Λ
(FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField).hom
x))
noncomputable def
rk215.inv2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) ⟶ B
Equations
Instances For
@[simp]
theorem
rk215.inv2_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(x :
↑(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
:
theorem
rk215.inv2_zero
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
theorem
rk215.inv12comm
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
noncomputable def
rk215.inv
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) ⟶ pullbackinC p p
Equations
Instances For
theorem
rk215.trivsqfst_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
Deformation.ArtinResAlg.ofHom
(TrivSqZeroExt.fstHom Λ (IsLocalRing.ResidueField Λ)
↑(FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) = (Deformation.ArtinResAlg.of Λ
(TrivSqZeroExt (IsLocalRing.ResidueField Λ)
↑(FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))).toResidueField
theorem
rk215.trivsqfst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(x : ↑(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
TrivSqZeroExt.fst x = (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField.hom x
noncomputable def
rk215.iso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
pullbackinC p p ≅ Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
Instances For
@[simp]
theorem
rk215.iso_hom_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
CategoryTheory.CategoryStruct.comp (iso p).hom
(fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField) = fstinC p p
@[simp]
theorem
rk215.iso_inv_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
CategoryTheory.CategoryStruct.comp (iso p).inv (fstinC p p) = fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField
@[simp]
theorem
rk215.iso_hom_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
@[simp]
theorem
rk215.iso_inv_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
:
def
rk215.auxiso1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
:
F.obj
(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))) ≅ F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
rk215.auxiso1_hom_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (auxiso1 p F).hom Prod.fst = F.map
(fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
@[simp]
theorem
rk215.auxiso1_hom_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (auxiso1 p F).hom Prod.snd = F.map
(sndinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
@[simp]
theorem
rk215.auxiso1_inv_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (auxiso1 p F).inv
(F.map
(fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)) = Prod.fst
@[simp]
theorem
rk215.auxiso1_inv_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (auxiso1 p F).inv
(F.map
(sndinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)) = Prod.snd
@[simp]
theorem
rk215.auxiso1_hom_fst_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x :
F.obj
(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
:
((auxiso1 p F).hom x).1 = F.map
(fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
x
@[simp]
theorem
rk215.auxiso1_hom_snd_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x :
F.obj
(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
:
((auxiso1 p F).hom x).2 = F.map
(sndinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
x
@[simp]
theorem
rk215.auxiso1_inv_fst_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x : F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
F.map
(fstinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
((auxiso1 p F).inv x) = x.1
@[simp]
theorem
rk215.auxiso1_inv_snd_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x : F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
F.map
(sndinC B.toResidueField
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))).toResidueField)
((auxiso1 p F).inv x) = x.2
def
rk215.auxmap2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
rk215.action
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) →
CategoryTheory.Limits.Types.PullbackObj (F.map p) (F.map p)
Equations
- rk215.action p F = CategoryTheory.CategoryStruct.comp (rk215.auxiso1 p F).inv (CategoryTheory.CategoryStruct.comp (F.map (rk215.iso p).inv) (rk215.auxmap2 p F))
Instances For
theorem
rk215.action_fst'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (action p F) (CategoryTheory.Limits.Types.pullbackCone (F.map p) (F.map p)).fst = Prod.fst
@[simp]
theorem
rk215.action_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x : F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
@[simp]
theorem
rk215.action_snd'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
CategoryTheory.CategoryStruct.comp (action p F) (CategoryTheory.Limits.Types.pullbackCone (F.map p) (F.map p)).snd = CategoryTheory.CategoryStruct.comp (auxiso1 p F).inv (F.map (inv2 p))
@[simp]
theorem
rk215.action_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x : F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
theorem
rk215.action_surj
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
(h : Function.Surjective ⇑p.hom)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H1 F]
:
Function.Surjective (action p F)
theorem
rk215.action_bij
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H4 F]
:
Function.Bijective (action p F)
def
rk215.app1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
:
G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) →
F.obj B × F.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))
Equations
- rk215.app1 p η x = (η.app B x.1, η.app (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) x.2)
Instances For
@[simp]
theorem
rk215.app1_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
(a✝ : G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
(app1 p η a✝).2 = η.app (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) a✝.2
@[simp]
theorem
rk215.app1_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
(a✝ : G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
theorem
rk215.app1_def
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
(x : G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
app1 p η x = (η.app B x.1, η.app (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))) x.2)
def
rk215.app2
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
:
CategoryTheory.Limits.Types.PullbackObj (G.map p) (G.map p) →
CategoryTheory.Limits.Types.PullbackObj (F.map p) (F.map p)
Instances For
@[simp]
theorem
rk215.app2_coe
{Λ : Type u}
[CommRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
(a✝ : CategoryTheory.Limits.Types.PullbackObj (G.map p) (G.map p))
:
theorem
rk215.appcomm_aux
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 G]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) G]
(η : G ⟶ F)
:
CategoryTheory.CategoryStruct.comp (app1 p η) (auxiso1 p F).inv = CategoryTheory.CategoryStruct.comp (auxiso1 p G).inv
(η.app
(Deformation.pullbackproduct B
(Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
theorem
rk215.appcomm
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 G]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) G]
(η : G ⟶ F)
(x : G.obj B × G.obj (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom))))
:
theorem
rk215.exist_of_surj
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
(h : Function.Surjective ⇑p.hom)
[IsSmallExtension p]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 G]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) G]
(η : G ⟶ F)
[H1 F]
(h' :
Function.Surjective (η.app (Deformation.tsze_C Λ (FGModuleCat.of (IsLocalRing.ResidueField Λ) ↥(RingHom.ker p.hom)))))
(x1 : G.obj B)
(x2 : F.obj B)
(h12 : F.map p (η.app B x1) = F.map p x2)
:
theorem
rk215.action_zero
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{A B : Deformation.ArtinResAlg Λ}
(p : B ⟶ A)
[IsSmallExtension p]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
(x : F.obj B)
: