functor sending A : ArtinResAlg Λ
to Hom(R, A)
Equations
Instances For
@[reducible, inline]
abbrev
Procouple
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
:
Type (u + 1)
a procouple is a pair (A, a)
with a : Fhat A
(the projective limit of the F (A/m^n)
)
Equations
- Procouple F = ((R : Deformation.ProArtinResAlg Λ) × F.completion.obj R)
Instances For
structure
Procouple.Hom
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(A B : Procouple F)
:
Type u
Instances For
noncomputable def
nattrans_of
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{R : Deformation.ProArtinResAlg Λ}
(x : F.completion.obj R)
:
nattrans_of
is the canonical (iso)morphism from F.completion.obj R
to natural transformations (hR R) ⟶ F
Equations
Instances For
@[simp]
theorem
nattrans_of_comp_artinhom
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{R : Deformation.ProArtinResAlg Λ}
(x : F.completion.obj R)
{A B : Deformation.ArtinResAlg Λ}
(u : R ⟶ Deformation.inclusionFunctor.obj A)
(u' : A ⟶ B)
:
(nattrans_of F x).app B (CategoryTheory.CategoryStruct.comp u (Deformation.inclusionFunctor.map u')) = F.map u' ((nattrans_of F x).app A u)
theorem
completion_map_quot_mk_eq_pi
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{A : Deformation.ProArtinResAlg Λ}
(n : ℕ)
:
CategoryTheory.CategoryStruct.comp (F.completion.map (proartin_quot_mk (IsLocalRing.maximalIdeal ↑A ^ n.succ)))
(completion_iso F (quot_C Λ (IsLocalRing.maximalIdeal ↑A ^ n.succ))).hom = CategoryTheory.Limits.limit.π ((inversediagram A).comp F) (Opposite.op n)
theorem
nattrans_of_proartin_quot_mk
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{R : Deformation.ProArtinResAlg Λ}
(x : F.completion.obj R)
(n : ℕ)
:
(nattrans_of F x).app (quot_C Λ (IsLocalRing.maximalIdeal ↑R ^ (n + 1)))
(proartin_quot_mk (IsLocalRing.maximalIdeal ↑R ^ (n + 1))) = CategoryTheory.Limits.limit.π ((inversediagram R).comp F) (Opposite.op n) x
theorem
nattrans_of_fac
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{R : Deformation.ProArtinResAlg Λ}
(x : F.completion.obj R)
(A : Deformation.ArtinResAlg Λ)
(n : ℕ)
(u' : quot_C Λ (IsLocalRing.maximalIdeal ↑R ^ n.succ) ⟶ A)
:
(nattrans_of F x).app A
(CategoryTheory.CategoryStruct.comp (proartin_quot_mk (IsLocalRing.maximalIdeal ↑R ^ n.succ))
(Deformation.inclusionFunctor.map u')) = F.map u' (CategoryTheory.Limits.limit.π ((inversediagram R).comp F) (Opposite.op n) x)
@[reducible, inline]
abbrev
Prorepresents
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(x : Procouple F)
:
a procouple (R, r)
for a functor F
pro-represents F
if the morphism hR ⟶ F
induced
by r
is an isomorphism
Equations
- Prorepresents F x = CategoryTheory.IsIso (nattrans_of F x.snd)
Instances For
def
IsHull
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
(x : Procouple F)
:
a procouple is a hull of F
if it induces a smooth natural transformation,
which is an isomorphism of the tangent spaces.
Equations
- IsHull F x = (IsSmooth (nattrans_of F x.snd) ∧ CategoryTheory.IsIso ((nattrans_of F x.snd).app dualNumber_C))
Instances For
theorem
hull_of_prorepresents
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
(x : Procouple F)
(h : Prorepresents F x)
:
IsHull F x
class
H1
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
:
- cond {A A' A'' : Deformation.ArtinResAlg Λ} (f : A' ⟶ A) (g : A'' ⟶ A) : Function.Surjective ⇑g.hom → IsSmallExtension g → Function.Surjective (CategoryTheory.Limits.pullbackComparison F f g)
Instances
@[reducible, inline]
abbrev
H3
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
:
Equations
- H3 F = Module.Finite (IsLocalRing.ResidueField Λ) (tangentSpace F)
Instances For
class
H4
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
:
- cond {A A' : Deformation.ArtinResAlg Λ} (f : A' ⟶ A) [IsSmallExtension f] : CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f f) F
Instances
noncomputable def
pullbackComparison_spec
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
pullbackComparison_spec_surj_iff
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
theorem
pullbackComparison_spec_fst
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
(x : F.obj (pullbackinC f g))
:
theorem
pullbackComparison_spec_snd
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
(x : F.obj (pullbackinC f g))
:
theorem
pullbackComparison_spec_surj_of_small
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[H1 F]
(surj : Function.Surjective ⇑g.hom)
[small : IsSmallExtension g]
:
theorem
pullbackComparison_comp
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
{W : Deformation.ArtinResAlg Λ}
(h : W ⟶ Y)
:
CategoryTheory.Limits.pullbackComparison F f (CategoryTheory.CategoryStruct.comp h g) = CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.Limits.pullbackLeftPullbackSndIso f g h).inv)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pullbackComparison F (CategoryTheory.Limits.pullback.snd f g) h)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pullback.map (F.map (CategoryTheory.Limits.pullback.snd f g)) (F.map h)
(CategoryTheory.Limits.pullback.snd (F.map f) (F.map g)) (F.map h)
(CategoryTheory.Limits.pullbackComparison F f g) (CategoryTheory.CategoryStruct.id (F.obj W))
(CategoryTheory.CategoryStruct.id (F.obj Y)) ⋯ ⋯)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pullbackLeftPullbackSndIso (F.map f) (F.map g) (F.map h)).hom
(CategoryTheory.Limits.pullback.congrHom ⋯ ⋯).inv)))
theorem
pullbackComparison_surj_of_surj
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[H1 F]
(surj : Function.Surjective ⇑g.hom)
:
theorem
pullbackComparison_spec_surj_of_surj
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[H1 F]
(surj : Function.Surjective ⇑g.hom)
:
theorem
preservesterminal_iff
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
:
noncomputable instance
instUniqueObjArtinResAlgResidueFieldOfPreservesLimitDiscretePEmptyEmpty
{Λ : Type u}
[CommRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsLocalRing Λ]
[h : CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
:
instance
instPreservesLimitArtinResAlgDiscretePEmptyEmptyHR
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(R : Deformation.ProArtinResAlg Λ)
:
instance
instPreservesLimitArtinResAlgWalkingCospanCospanHR
{Λ : Type u}
[CommRing Λ]
(R : Deformation.ProArtinResAlg Λ)
{X Y Z : Deformation.ArtinResAlg Λ}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
theorem
H1.congr
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H1 F]
(i : F ≅ G)
:
H1 G
theorem
H2.congr
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H2 F]
(i : F ≅ G)
:
H2 G
theorem
H3.congr
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) G]
[H2 G]
[H3 F]
(i : F ≅ G)
:
H3 G
theorem
H4.congr
{Λ : Type u}
[CommRing Λ]
{F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[H4 F]
(i : F ≅ G)
:
H4 G
instance
instIsIsoObjArtinResAlgTsze_CAppOfDualNumber_C
{Λ : Type u}
[CommRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
[IsLocalRing Λ]
{G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
(η : G ⟶ F)
[CategoryTheory.Limits.PreservesFiniteProducts (Deformation.tsze_functor.comp F)]
[CategoryTheory.Limits.PreservesFiniteProducts (Deformation.tsze_functor.comp G)]
[h : CategoryTheory.IsIso (η.app dualNumber_C)]
(M : FGModuleCat (IsLocalRing.ResidueField Λ))
:
CategoryTheory.IsIso (η.app (Deformation.tsze_C Λ M))
instance
instQuotInCDenom_idealOfIsLocalHomRingHomAlgebraMap
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{X : Type u}
[CommRing X]
[IsLocalRing X]
[Algebra Λ X]
[IsLocalHom (algebraMap Λ X)]
:
QuotInC (denom_ideal Λ X)