Documentation

Schlessinger.Theorem.Defs

functor sending A : ArtinResAlg Λ to Hom(R, A)

Equations
Instances For
    @[reducible, inline]
    abbrev Procouple {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) :
    Type (u + 1)

    a procouple is a pair (A, a) with a : Fhat A (the projective limit of the F (A/m^n))

    Equations
    Instances For
      Instances For
        noncomputable def nattrans_of {Λ : Type u} [CommRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {R : Deformation.ProArtinResAlg Λ} (x : F.completion.obj R) :
        hR R F

        nattrans_of is the canonical (iso)morphism from F.completion.obj R to natural transformations (hR R) ⟶ F

        Equations
        Instances For
          @[reducible, inline]

          a procouple (R, r) for a functor F pro-represents F if the morphism hR ⟶ F induced by r is an isomorphism

          Equations
          Instances For

            a procouple is a hull of F if it induces a smooth natural transformation, which is an isomorphism of the tangent spaces.

            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem pullbackComparison_spec_fst {Λ : Type u} [CommRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) (x : F.obj (pullbackinC f g)) :
                (↑(pullbackComparison_spec F f g x)).1 = F.map (fstinC f g) x
                theorem pullbackComparison_spec_snd {Λ : Type u} [CommRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} [IsLocalRing Λ] {X Y Z : Deformation.ArtinResAlg Λ} (f : X Z) (g : Y Z) (x : F.obj (pullbackinC f g)) :
                (↑(pullbackComparison_spec F f g x)).2 = F.map (sndinC f g) x
                instance instH1HR {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (R : Deformation.ProArtinResAlg Λ) :
                H1 (hR R)
                instance instH2HR {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (R : Deformation.ProArtinResAlg Λ) :
                H2 (hR R)
                instance instH3HR {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (R : Deformation.ProArtinResAlg Λ) :
                H3 (hR R)
                instance instH4HR {Λ : Type u} [CommRing Λ] (R : Deformation.ProArtinResAlg Λ) :
                H4 (hR R)
                theorem H4.congr {Λ : Type u} [CommRing Λ] {F G : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} [H4 F] (i : F G) :
                H4 G