Documentation

Schlessinger.Theorem.Proof1

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[reducible, inline]
          abbrev proof1.indStepSet1 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {r : } (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) :
          Equations
          Instances For
            Equations
            Instances For
              Equations
              Instances For
                def proof1.quot_inf_equiv (Λ : Type u) [CommRing Λ] {R : Type u} [CommRing R] [Algebra Λ R] (J K : Ideal R) :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem proof1.quot_inf_equiv_hom_snd (Λ : Type u) [CommRing Λ] {R : Type u} [CommRing R] [Algebra Λ R] {J K : Ideal R} (x : R JK) :
                  (↑((quot_inf_equiv Λ J K) x)).2 = (Ideal.Quotient.factor ) x
                  def proof1.quot_iso {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {R : Type u} [CommRing R] [IsLocalRing R] [IsNoetherianRing R] [Algebra Λ R] [IsResidueAlgebra Λ R] (J K : Ideal R) [QuotInC J] [QuotInC K] :
                  quot_C Λ (JK) pullbackinC (transitionmap_C Λ ) (transitionmap_C Λ )
                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev proof1.nJq {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {r : } (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) :
                    Equations
                    Instances For
                      def proof1.Submodule.extendScalarsOfSurjectiveEquiv {R : Type u_1} {S' : Type u_2} [CommSemiring R] [Semiring S'] [Algebra R S'] {M : Type u_3} [AddCommMonoid M] [Module R M] [Module S' M] [IsScalarTower R S' M] (h : Function.Surjective (algebraMap R S')) :

                      If R →+* S' is surjective, then S'-linear maps between modules are exactly R-linear maps.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[reducible, inline]
                        abbrev proof1.Submodule.extendScalarsOfSurjective {R : Type u_1} {S' : Type u_2} [CommSemiring R] [Semiring S'] [Algebra R S'] {M : Type u_3} [AddCommMonoid M] [Module R M] [Module S' M] [IsScalarTower R S' M] (h : Function.Surjective (algebraMap R S')) (l : Submodule R M) :

                        If R →+* S' is surjective, then R-linear maps are also S'-linear.

                        Equations
                        Instances For
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def proof1.le_stable {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] {Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)} {x : F.obj (quot_C Λ Jq.ideal)} (J : (indStepSet2 F Jq x)) (K : (indStepSet1 Jq)) (h : J K) :
                            (indStepSet2 F Jq x)
                            Equations
                            Instances For
                              theorem proof1.exists_sum_Jq {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] {Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)} {x : F.obj (quot_C Λ Jq.ideal)} (J K : (indStepSet2 F Jq x)) :
                              ∃ (J' : (indStepSet2 F Jq x)), J'K = JK J'K = Jq.ideal
                              def proof1.intersection_stable {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] [H1 F] {Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)} {x : F.obj (quot_C Λ Jq.ideal)} (J K : (indStepSet2 F Jq x)) :
                              (indStepSet2 F Jq x)
                              Equations
                              Instances For
                                theorem proof1.indStepExists {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] [H1 F] (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) (x : F.obj (quot_C Λ Jq.ideal)) :
                                JindStepSet2 F Jq x, ∀ (I : (indStepSet2 F Jq x)), J I
                                def proof1.inddef {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] [H1 F] (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) (x : F.obj (quot_C Λ Jq.ideal)) :
                                (J : QuotCIdeal (MvPowerSeries (Fin r) Λ)) × F.obj (quot_C Λ J.ideal)
                                Equations
                                Instances For
                                  theorem proof1.inddef_2 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] [H1 F] (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) (x : F.obj (quot_C Λ Jq.ideal)) :
                                  (inddef F Jq x).fst.ideal Jq.ideal
                                  theorem proof1.inddef_3 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] [H1 F] (Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)) (x : F.obj (quot_C Λ Jq.ideal)) :
                                  F.map (transitionmap_C Λ ) (inddef F Jq x).snd = x
                                  Equations
                                  Instances For
                                    @[reducible, inline]
                                    Equations
                                    Instances For
                                      @[reducible, inline]
                                      Equations
                                      Instances For
                                        @[reducible, inline]
                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem proof1.pairs_compatible {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] (m n : ) (hnm : n m) :
                                          F.map (transmap F hr hnm) (pairs F hr m).snd = (pairs F hr n).snd
                                          @[simp]
                                          theorem proof1.pairs_compatible' {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] (F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)) {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] (m n : ) (hnm : ideals F hr m ideals F hr n) :
                                          F.map (transitionmap_C Λ hnm) (pairs F hr m).snd = (pairs F hr n).snd
                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              Equations
                                              Instances For
                                                theorem proof1.comm' {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] [Deformation.IsComplete Λ] {A' A : Deformation.ArtinResAlg Λ} (p : A' A) (u : R F hr Deformation.inclusionFunctor.obj A) {η : F.obj A'} (comm : (nattrans_of F (procouple F hr).snd).app A u = F.map p η) :
                                                F.map (u_fac hr u) (pairs F hr .choose).snd = F.map p η
                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  Equations
                                                  Instances For
                                                    Equations
                                                    Instances For
                                                      theorem proof1.exists_lift {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] [Deformation.IsComplete Λ] {A' A : Deformation.ArtinResAlg Λ} (p : A' A) (surj : Function.Surjective p.hom) (u : R F hr Deformation.inclusionFunctor.obj A) {η : F.obj A'} (comm' : F.map (u_fac hr u) (pairs F hr .choose).snd = F.map p η) [IsSmallExtension p] :
                                                      ∃ (x : F.obj (pullbackinC (u_fac hr u) p)), F.map (fstinC (u_fac hr u) p) x = (pairs F hr .choose).snd
                                                      theorem proof1.mem_indstepset2 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] [Deformation.IsComplete Λ] {A' A : Deformation.ArtinResAlg Λ} (p : A' A) (surj : Function.Surjective p.hom) (u : R F hr Deformation.inclusionFunctor.obj A) {η : F.obj A'} (comm' : F.map (u_fac hr u) (pairs F hr .choose).snd = F.map p η) [IsSmallExtension p] (h : Function.Surjective (w_C hr p surj u).hom) :
                                                      ker_indstepset1 hr p surj u indStepSet2 F { ideal := ideals F hr .choose, quotinc := } (pairs F hr .choose).snd
                                                      theorem proof1.suff4 {Λ : Type u} [CommRing Λ] [IsLocalRing Λ] {F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)} {r : } [IsNoetherianRing Λ] (hr : ∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)) [H1 F] [Deformation.IsComplete Λ] {A' A : Deformation.ArtinResAlg Λ} (p : A' A) (surj : Function.Surjective p.hom) (u : R F hr Deformation.inclusionFunctor.obj A) {η : F.obj A'} (comm' : F.map (u_fac hr u) (pairs F hr .choose).snd = F.map p η) [IsSmallExtension p] :