Equations
Instances For
def
proof1.exists_aux_iso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
proof1.tszehomlinmap
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{M N : FGModuleCat (IsLocalRing.ResidueField Λ)}
(f : Deformation.tsze_C Λ M ⟶ Deformation.tsze_C Λ N)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
proof1.tszehomlinmap_apply
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{M N : FGModuleCat (IsLocalRing.ResidueField Λ)}
(f : Deformation.tsze_C Λ M ⟶ Deformation.tsze_C Λ N)
(x : ↑M)
:
(tszehomlinmap f) x = (TrivSqZeroExt.sndHom (IsLocalRing.ResidueField Λ) ↑N)
(f.hom ((TrivSqZeroExt.inrHom (IsLocalRing.ResidueField Λ) ↑M) x))
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
proof1.finmodulebasis
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(r : ℕ)
:
Basis (Fin r) (IsLocalRing.ResidueField Λ)
((Fin r → IsLocalRing.ResidueField Λ) →ₗ[IsLocalRing.ResidueField Λ] IsLocalRing.ResidueField Λ)
Equations
Instances For
def
proof1.basis_aux
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(r : ℕ)
:
Basis (Fin r) (IsLocalRing.ResidueField Λ) ((CategoryTheory.coyoneda.obj (Opposite.op (fintsze r))).obj dualNumber_C)
Equations
Instances For
theorem
proof1.inv_piComparison_map_fst
{β : Type u_1}
{C : Type u_2}
{D : Type u_3}
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.Category.{u_5, u_3} D]
(G : CategoryTheory.Functor C D)
(f : β → C)
[CategoryTheory.Limits.HasProduct f]
[CategoryTheory.Limits.HasProduct fun (b : β) => G.obj (f b)]
(b : β)
[CategoryTheory.IsIso (CategoryTheory.Limits.piComparison G f)]
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (CategoryTheory.Limits.piComparison G f))
(G.map (CategoryTheory.Limits.Pi.π f b)) = CategoryTheory.Limits.Pi.π (fun (b : β) => G.obj (f b)) b
theorem
proof1.basis_aux_prop
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(f : Fin r → F.obj dualNumber_C)
(x : Fin r)
:
def
proof1.equiv_aux
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(b : Basis (Fin r) (IsLocalRing.ResidueField Λ) (F.obj dualNumber_C))
:
Equations
- proof1.equiv_aux F r b = (proof1.basis_aux r).equiv b (Equiv.refl (Fin r))
Instances For
theorem
proof1.equiv_aux_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(b : Basis (Fin r) (IsLocalRing.ResidueField Λ) (F.obj dualNumber_C))
:
⇑↑(equiv_aux F r b) = (CategoryTheory.coyonedaEquiv.symm ((exists_aux_iso F r).inv ⇑b)).app dualNumber_C
theorem
proof1.exists_xi2'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(b : Basis (Fin r) (IsLocalRing.ResidueField Λ) (F.obj dualNumber_C))
:
∃ (x : F.obj (fintsze r)), CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)
theorem
proof1.exists_xi2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
(r : ℕ)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
[IsNoetherianRing Λ]
(b : Basis (Fin r) (IsLocalRing.ResidueField Λ) (F.obj dualNumber_C))
:
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C)
@[reducible, inline]
abbrev
proof1.indStepSet1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
Set (Ideal (MvPowerSeries (Fin r) Λ))
Equations
- proof1.indStepSet1 Jq = Set.Icc (IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) * Jq.ideal) Jq.ideal
Instances For
instance
proof1.instQuotInCMvPowerSeriesFinValIdealMemSetIndStepSet1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(J : ↑(indStepSet1 Jq))
:
QuotInC ↑J
def
proof1.indStepSet2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
Set ↑(indStepSet1 Jq)
Equations
- proof1.indStepSet2 F Jq x = {J : ↑(proof1.indStepSet1 Jq) | ∃ (y : F.obj (quot_C Λ ↑J)), F.map (transitionmap_C Λ ⋯) y = x}
Instances For
def
proof1.embed
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
↑(indStepSet1 Jq) ↪o { p : Ideal (MvPowerSeries (Fin r) Λ) // IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) * Jq.ideal ≤ p }
Equations
- proof1.embed Jq = { toFun := fun (J : ↑(proof1.indStepSet1 Jq)) => ⟨↑J, ⋯⟩, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
instance
proof1.instQuotInCMvPowerSeriesFinHMulIdealMaximalIdealIdeal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
QuotInC (IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) * Jq.ideal)
instance
proof1.instWellFoundedLTElemIdealMvPowerSeriesFinIndStepSet1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
[IsNoetherianRing Λ]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
WellFoundedLT ↑(indStepSet1 Jq)
theorem
proof1.nonempty
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
(indStepSet2 F Jq x).Nonempty
def
proof1.quot_iso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
(J K : Ideal R)
[QuotInC J]
[QuotInC K]
:
Equations
Instances For
theorem
proof1.quot_iso_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
{J K : Ideal R}
[QuotInC J]
[QuotInC K]
:
CategoryTheory.CategoryStruct.comp (quot_iso J K).hom (sndinC (transitionmap_C Λ ⋯) (transitionmap_C Λ ⋯)) = transitionmap_C Λ ⋯
def
proof1.auxmap
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
(J K : Ideal R)
[QuotInC J]
[QuotInC K]
:
F.obj (quot_C Λ (J ⊓ K)) ⟶ CategoryTheory.Limits.Types.PullbackObj (F.map (transitionmap_C Λ ⋯)) (F.map (transitionmap_C Λ ⋯))
Equations
- proof1.auxmap F J K = CategoryTheory.CategoryStruct.comp (F.mapIso (proof1.quot_iso J K)).hom (pullbackComparison_spec F (transitionmap_C Λ ⋯) (transitionmap_C Λ ⋯))
Instances For
theorem
proof1.auxmap_hom_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
(J K : Ideal R)
[QuotInC J]
[QuotInC K]
[QuotInC (J ⊔ K)]
:
F.map (transitionmap_C Λ ⋯) = CategoryTheory.CategoryStruct.comp (auxmap F J K)
(CategoryTheory.Limits.Types.pullbackCone (F.map (transitionmap_C Λ ⋯)) (F.map (transitionmap_C Λ ⋯))).snd
theorem
proof1.auxmap_surjective
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[H1 F]
{R : Type u}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Algebra Λ R]
[IsResidueAlgebra Λ R]
{J K : Ideal R}
[QuotInC J]
[QuotInC K]
:
Function.Surjective (auxmap F J K)
@[reducible, inline]
abbrev
proof1.nJq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
Submodule (MvPowerSeries (Fin r) Λ) ↥Jq.ideal
Equations
- proof1.nJq Jq = IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) • ⊤
Instances For
theorem
proof1.Jqtorsion
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
:
Module.IsTorsionBySet (MvPowerSeries (Fin r) Λ) (↥Jq.ideal ⧸ nJq Jq)
↑(IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ))
instance
proof1.instModuleResidueFieldMvPowerSeriesFinQuotientSubtypeMemIdealIdealSubmoduleNJq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
:
Module (IsLocalRing.ResidueField (MvPowerSeries (Fin r) Λ)) (↥Jq.ideal ⧸ nJq Jq)
instance
proof1.instIsScalarTowerMvPowerSeriesFinResidueFieldQuotientSubtypeMemIdealIdealSubmoduleNJq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
:
IsScalarTower (MvPowerSeries (Fin r) Λ) (IsLocalRing.ResidueField (MvPowerSeries (Fin r) Λ)) (↥Jq.ideal ⧸ nJq Jq)
def
proof1.Submodule.extendScalarsOfSurjectiveEquiv
{R : Type u_1}
{S' : Type u_2}
[CommSemiring R]
[Semiring S']
[Algebra R S']
{M : Type u_3}
[AddCommMonoid M]
[Module R M]
[Module S' M]
[IsScalarTower R S' M]
(h : Function.Surjective ⇑(algebraMap R S'))
:
If R →+* S'
is surjective, then S'
-linear maps
between modules are exactly R
-linear maps.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
proof1.Submodule.extendScalarsOfSurjective
{R : Type u_1}
{S' : Type u_2}
[CommSemiring R]
[Semiring S']
[Algebra R S']
{M : Type u_3}
[AddCommMonoid M]
[Module R M]
[Module S' M]
[IsScalarTower R S' M]
(h : Function.Surjective ⇑(algebraMap R S'))
(l : Submodule R M)
:
Submodule S' M
If R →+* S'
is surjective, then R
-linear maps are also S'
-linear.
Equations
Instances For
def
proof1.exists_sum_Jq_aux_iso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
:
↑(indStepSet1 Jq) ≃o Submodule (IsLocalRing.ResidueField (MvPowerSeries (Fin r) Λ)) (↥Jq.ideal ⧸ nJq Jq)
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
proof1.le_stable
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
{x : F.obj (quot_C Λ Jq.ideal)}
(J : ↑(indStepSet2 F Jq x))
(K : ↑(indStepSet1 Jq))
(h : ↑J ≤ K)
:
↑(indStepSet2 F Jq x)
Equations
- proof1.le_stable J K h = ⟨K, ⋯⟩
Instances For
instance
proof1.instFactLeIdealMvPowerSeriesFinHMulMaximalIdealIdeal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{r : ℕ}
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
:
Fact (IsLocalRing.maximalIdeal (MvPowerSeries (Fin r) Λ) * Jq.ideal ≤ Jq.ideal)
theorem
proof1.exists_sum_Jq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
{x : F.obj (quot_C Λ Jq.ideal)}
(J K : ↑(indStepSet2 F Jq x))
:
∃ (J' : ↑(indStepSet2 F Jq x)), ↑↑J' ⊓ ↑↑K = ↑↑J ⊓ ↑↑K ∧ ↑↑J' ⊔ ↑↑K = Jq.ideal
def
proof1.intersection_stable
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
{Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ)}
{x : F.obj (quot_C Λ Jq.ideal)}
(J K : ↑(indStepSet2 F Jq x))
:
↑(indStepSet2 F Jq x)
Instances For
theorem
proof1.indStepExists
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
∃ J ∈ indStepSet2 F Jq x, ∀ (I : ↑(indStepSet2 F Jq x)), ↑J ≤ ↑↑I
def
proof1.inddef
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
(J : QuotCIdeal (MvPowerSeries (Fin r) Λ)) × F.obj (quot_C Λ J.ideal)
Equations
- proof1.inddef F Jq x = ⟨{ ideal := ↑⋯.choose, quotinc := ⋯ }, Exists.choose ⋯⟩
Instances For
theorem
proof1.inddef_2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
theorem
proof1.inddef_1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
theorem
proof1.inddef_3
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
[H1 F]
(Jq : QuotCIdeal (MvPowerSeries (Fin r) Λ))
(x : F.obj (quot_C Λ Jq.ideal))
:
def
proof1.pairs
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
ℕ → (J : QuotCIdeal (MvPowerSeries (Fin r) Λ)) × F.obj (quot_C Λ J.ideal)
Equations
- proof1.pairs F hr 0 = ⟨{ ideal := denom_ideal Λ (MvPowerSeries (Fin r) Λ), quotinc := ⋯ }, hr.choose⟩
- proof1.pairs F hr n.succ = proof1.inddef F (proof1.pairs F hr n).fst (proof1.pairs F hr n).snd
Instances For
@[simp]
theorem
proof1.pairs_0_ideal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
@[reducible, inline]
abbrev
proof1.ideals
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(n : ℕ)
:
Ideal (MvPowerSeries (Fin r) Λ)
Equations
- proof1.ideals F hr n = (proof1.pairs F hr n).fst.ideal
Instances For
@[reducible, inline]
abbrev
proof1.quotients
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(n : ℕ)
:
Equations
- proof1.quotients F hr n = quot_C Λ (proof1.pairs F hr n).fst.ideal
Instances For
theorem
proof1.pairs_antitone
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
@[reducible, inline]
abbrev
proof1.transmap
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
{n m : ℕ}
(h : n ≤ m)
:
Equations
- proof1.transmap F hr h = transitionmap_C Λ ⋯
Instances For
@[simp]
theorem
proof1.pairs_compatible
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(m n : ℕ)
(hnm : n ≤ m)
:
@[simp]
theorem
proof1.pairs_compatible'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(m n : ℕ)
(hnm : ideals F hr m ≤ ideals F hr n)
:
theorem
proof1.maxideal_le
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(n : ℕ)
:
instance
proof1.tangentiso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm (pairs F hr 0).snd).app dualNumber_C)
def
proof1.ideal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
Ideal (MvPowerSeries (Fin r) Λ)
Equations
- proof1.ideal F hr = iInf (proof1.ideals F hr)
Instances For
instance
proof1.instNontrivialQuotientMvPowerSeriesFinIdealIdeal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
Nontrivial (MvPowerSeries (Fin r) Λ ⧸ ideal F hr)
instance
proof1.instIsCompleteQuotientMvPowerSeriesFinIdealIdeal
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
Deformation.IsComplete (MvPowerSeries (Fin r) Λ ⧸ ideal F hr)
@[reducible, inline]
abbrev
proof1.R
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
Equations
- proof1.R F hr = Deformation.ProArtinResAlg.of Λ (MvPowerSeries (Fin r) Λ ⧸ proof1.ideal F hr)
Instances For
def
proof1.quot_mk_S_R
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
Equations
Instances For
def
proof1.procouple
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
proof1.procouple_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
instance
proof1.instIsLocalHomQuotientIdealRingHomFactorOfIsLocalRingOfNontrivial_schlessinger
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
{I J : Ideal R}
[Nontrivial (R ⧸ I)]
[Nontrivial (R ⧸ J)]
(h : I ≤ J)
:
instance
proof1.instIsLocalHomQuotientIdealAlgHomFactorₐOfIsLocalRingOfNontrivial_schlessinger
{Λ : Type u}
[CommRing Λ]
{R : Type u_1}
[CommRing R]
[Algebra Λ R]
[IsLocalRing R]
{I J : Ideal R}
[Nontrivial (R ⧸ I)]
[Nontrivial (R ⧸ J)]
(h : I ≤ J)
:
def
proof1.map_R_ideals
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(n : ℕ)
:
Equations
Instances For
def
proof1.map_R_ideals'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
(n : ℕ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
proof1.map_R_ideals'_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
(n : ℕ)
:
@[simp]
theorem
proof1.map_R_ideals_mk
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
(n : ℕ)
(x : MvPowerSeries (Fin r) Λ)
:
(map_R_ideals hr n).hom ((Ideal.Quotient.mk (ideal F hr)) x) = (Ideal.Quotient.mk (pairs F hr n).fst.ideal) x
@[simp]
theorem
proof1.procouple_snd
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
(n : ℕ)
:
(nattrans_of F (procouple F hr).snd).app (quotients F hr n) (map_R_ideals hr n) = (pairs F hr n).snd
theorem
proof1.homkeps_max_sq_zero
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X : Deformation.ProArtinResAlg Λ)
(f : X ⟶ Deformation.inclusionFunctor.obj dualNumber_C)
(x : ↥(IsLocalRing.maximalIdeal ↑X ^ 2))
:
theorem
proof1.homkeps_map_zero
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X : Deformation.ProArtinResAlg Λ)
(f : X ⟶ Deformation.inclusionFunctor.obj dualNumber_C)
(x : ↥(Ideal.map (algebraMap Λ ↑X) (IsLocalRing.maximalIdeal Λ)))
:
theorem
proof1.homkeps_denom_le_ker
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(X : Deformation.ProArtinResAlg Λ)
(f : X ⟶ Deformation.inclusionFunctor.obj dualNumber_C)
:
noncomputable def
proof1.prop2_hom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
(hR (R F hr)).obj dualNumber_C → (CategoryTheory.coyoneda.obj (Opposite.op (quotients F hr 0))).obj dualNumber_C
Equations
- proof1.prop2_hom F hr u = Deformation.ArtinResAlg.ofHom (Ideal.Quotient.liftₐ (proof1.pairs F hr 0).fst.ideal (CategoryTheory.CategoryStruct.comp (proof1.quot_mk_S_R F hr) u).hom ⋯)
Instances For
theorem
proof1.prop2_hom_comp
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
(f : (hR (R F hr)).obj dualNumber_C)
:
f = CategoryTheory.CategoryStruct.comp (map_R_ideals hr 0) (Deformation.inclusionFunctor.map (prop2_hom F hr f))
noncomputable def
proof1.prop2_inv
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
:
(CategoryTheory.coyoneda.obj (Opposite.op (quotients F hr 0))).obj dualNumber_C → (hR (R F hr)).obj dualNumber_C
Equations
Instances For
noncomputable def
proof1.prop2_iso
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
(hR (R F hr)).obj dualNumber_C ≅ (CategoryTheory.coyoneda.obj (Opposite.op (quotients F hr 0))).obj dualNumber_C
Equations
- proof1.prop2_iso F hr = { hom := proof1.prop2_hom F hr, inv := proof1.prop2_inv F hr, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
theorem
proof1.prop2_iso_comm
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
CategoryTheory.CategoryStruct.comp (prop2_iso F hr).hom
((CategoryTheory.coyonedaEquiv.symm (pairs F hr 0).snd).app dualNumber_C) = (nattrans_of F (procouple F hr).snd).app dualNumber_C
instance
proof1.prop2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
:
CategoryTheory.IsIso ((nattrans_of F (procouple F hr).snd).app dualNumber_C)
theorem
proof1.suff1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
{η : F.obj A'}
(comm : (nattrans_of F (procouple F hr).snd).app A u = F.map p η)
[IsSmallExtension p]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
(h :
∃ (u' : R F hr ⟶ Deformation.inclusionFunctor.obj A'),
CategoryTheory.CategoryStruct.comp u' (Deformation.inclusionFunctor.map p) = u)
:
def
proof1.u_S
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
{A : Deformation.ArtinResAlg Λ}
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Equations
- proof1.u_S hr u = u.hom.comp (Ideal.Quotient.mkₐ Λ (proof1.ideal F hr))
Instances For
instance
proof1.instIsLocalHomCarrierRObjArtinResAlgProArtinResAlgInclusionFunctorAlgHomHom
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
{A : Deformation.ArtinResAlg Λ}
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
theorem
proof1.exist_factor
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A : Deformation.ArtinResAlg Λ}
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
∃ (q : ℕ), ideals F hr q ≤ RingHom.ker (u_S hr u)
def
proof1.u_fac
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A : Deformation.ArtinResAlg Λ}
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Equations
- proof1.u_fac hr u = Deformation.ArtinResAlg.ofHom (Ideal.Quotient.liftₐ (proof1.pairs F hr ⋯.choose).fst.ideal (proof1.u_S hr u) ⋯)
Instances For
theorem
proof1.u_fac_eq
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A : Deformation.ArtinResAlg Λ}
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
CategoryTheory.CategoryStruct.comp (map_R_ideals hr ⋯.choose) (Deformation.inclusionFunctor.map (u_fac hr u)) = u
theorem
proof1.comm'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
{η : F.obj A'}
(comm : (nattrans_of F (procouple F hr).snd).app A u = F.map p η)
:
theorem
proof1.suff2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(h :
∃ (v : quotients F hr ⋯.choose.succ ⟶ A'),
CategoryTheory.CategoryStruct.comp v p = CategoryTheory.CategoryStruct.comp (transmap F hr ⋯) (u_fac hr u))
:
∃ (u' : R F hr ⟶ Deformation.inclusionFunctor.obj A'),
CategoryTheory.CategoryStruct.comp u' (Deformation.inclusionFunctor.map p) = u
theorem
proof1.issmall_aux_lem
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(x : ↑(pullbackinC (u_fac hr u) p))
:
def
proof1.issmall_aux_equiv
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
proof1.instIsSmallExtensionFstinCU_fac
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[small : IsSmallExtension p]
:
IsSmallExtension (fstinC (u_fac hr u) p)
theorem
proof1.surj_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Function.Surjective ⇑(fstinC (u_fac hr u) p).hom
theorem
proof1.exist_w
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(i : Fin r)
:
∃ (y : ↑(pullbackinC (u_fac hr u) p)),
(fstinC (u_fac hr u) p).hom y = (Ideal.Quotient.mk (pairs F hr ⋯.choose).fst.ideal) (MvPowerSeries.X i)
def
proof1.pre_w
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(i : Fin r)
:
↑(pullbackinC (u_fac hr u) p)
Equations
- proof1.pre_w hr p surj u i = ⋯.choose
Instances For
@[simp]
theorem
proof1.pre_w_def
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(i : Fin r)
:
def
proof1.instUniformSpaceCarrier
{Λ : Type u}
[CommRing Λ]
(X : Deformation.ArtinResAlg Λ)
:
UniformSpace ↑X
Equations
Instances For
theorem
proof1.instDiscreteUniformityCarrier
{Λ : Type u}
[CommRing Λ]
(X : Deformation.ArtinResAlg Λ)
:
theorem
proof1.hasEval_pre_w
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
MvPowerSeries.HasEval (pre_w hr p surj u)
theorem
proof1.instContinuousSMulCarrier
{Λ : Type u}
[CommRing Λ]
(X : Deformation.ArtinResAlg Λ)
:
ContinuousSMul Λ ↑X
def
proof1.w
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Equations
- proof1.w hr p surj u = MvPowerSeries.aeval ⋯
Instances For
theorem
proof1.w_def'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
theorem
proof1.w_def
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(x : MvPowerSeries (Fin r) Λ)
:
instance
proof1.instIsLocalHomMvPowerSeriesFinCarrierPullbackinCU_facAlgHomW
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
IsLocalHom (w hr p surj u)
def
proof1.w_C
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Deformation.ProArtinResAlg.of Λ (MvPowerSeries (Fin r) Λ) ⟶ Deformation.inclusionFunctor.obj (pullbackinC (u_fac hr u) p)
Equations
- proof1.w_C hr p surj u = Deformation.ProArtinResAlg.ofHom (proof1.w hr p surj u)
Instances For
theorem
proof1.w_prop
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
CategoryTheory.CategoryStruct.comp (w_C hr p surj u) (Deformation.inclusionFunctor.map (fstinC (u_fac hr u) p)) = proartin_quot_mk (ideals F hr ⋯.choose)
theorem
proof1.surj_w_fst
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
:
Function.Surjective
⇑(CategoryTheory.CategoryStruct.comp (w_C hr p surj u) (Deformation.inclusionFunctor.map (fstinC (u_fac hr u) p))).hom
theorem
proof1.suff3
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(h :
∃ (v : quotients F hr ⋯.choose.succ ⟶ pullbackinC (u_fac hr u) p),
CategoryTheory.CategoryStruct.comp v (fstinC (u_fac hr u) p) = transmap F hr ⋯)
:
∃ (v : quotients F hr ⋯.choose.succ ⟶ A'),
CategoryTheory.CategoryStruct.comp v p = CategoryTheory.CategoryStruct.comp (transmap F hr ⋯) (u_fac hr u)
theorem
proof1.suff4'
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
(h : ideals F hr (⋯.choose + 1) ≤ RingHom.ker (w_C hr p surj u).hom)
:
theorem
proof1.mem_indstepset1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[IsSmallExtension p]
:
def
proof1.ker_indstepset1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[IsSmallExtension p]
:
↑(indStepSet1 { ideal := ideals F hr ⋯.choose, quotinc := ⋯ })
Equations
- proof1.ker_indstepset1 hr p surj u = ⟨RingHom.ker (proof1.w_C hr p surj u).hom, ⋯⟩
Instances For
theorem
proof1.exists_lift
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
{η : F.obj A'}
(comm' : F.map (u_fac hr u) (pairs F hr ⋯.choose).snd = F.map p η)
[IsSmallExtension p]
:
def
proof1.iso_ker_of_surj
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[IsSmallExtension p]
(h : Function.Surjective ⇑(w_C hr p surj u).hom)
:
Equations
Instances For
theorem
proof1.iso_ker_of_surj_def
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[IsSmallExtension p]
(h : Function.Surjective ⇑(w_C hr p surj u).hom)
:
CategoryTheory.CategoryStruct.comp (proartin_quot_mk ↑(ker_indstepset1 hr p surj u))
(Deformation.inclusionFunctor.map (iso_ker_of_surj hr p surj u h).hom) = w_C hr p surj u
theorem
proof1.iso_ker_of_surj_comp
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
[IsSmallExtension p]
(h : Function.Surjective ⇑(w_C hr p surj u).hom)
:
CategoryTheory.CategoryStruct.comp (iso_ker_of_surj hr p surj u h).inv (transitionmap_C Λ ⋯) = fstinC (u_fac hr u) p
theorem
proof1.mem_indstepset2
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
{η : F.obj A'}
(comm' : F.map (u_fac hr u) (pairs F hr ⋯.choose).snd = F.map p η)
[IsSmallExtension p]
(h : Function.Surjective ⇑(w_C hr p surj u).hom)
:
ker_indstepset1 hr p surj u ∈ indStepSet2 F { ideal := ideals F hr ⋯.choose, quotinc := ⋯ } (pairs F hr ⋯.choose).snd
theorem
proof1.suff4
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
{F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u)}
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
{A' A : Deformation.ArtinResAlg Λ}
(p : A' ⟶ A)
(surj : Function.Surjective ⇑p.hom)
(u : R F hr ⟶ Deformation.inclusionFunctor.obj A)
{η : F.obj A'}
(comm' : F.map (u_fac hr u) (pairs F hr ⋯.choose).snd = F.map p η)
[IsSmallExtension p]
:
theorem
proof1.prop1
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
{r : ℕ}
[IsNoetherianRing Λ]
(hr :
∃ (x : F.obj (quot_C Λ (denom_ideal Λ (MvPowerSeries (Fin r) Λ)))),
CategoryTheory.IsIso ((CategoryTheory.coyonedaEquiv.symm x).app dualNumber_C))
[H1 F]
[Deformation.IsComplete Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
:
IsSmooth (nattrans_of F (procouple F hr).snd)
theorem
proof1.ishull
{Λ : Type u}
[CommRing Λ]
[IsLocalRing Λ]
(F : CategoryTheory.Functor (Deformation.ArtinResAlg Λ) (Type u))
[IsNoetherianRing Λ]
[H1 F]
[Deformation.IsComplete Λ]
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Functor.empty (Deformation.ArtinResAlg Λ)) F]
[H2 F]
[H3 F]
: